/** * @file * @brief Provides utilities to compute Catalan numbers using dynamic programming. * A Catalan numbers satisfy these recurrence relations: * C(0) = C(1) = 1; C(n) = sum(C(i).C(n-i-1)), for i = 0 to n-1 * Read more about Catalan numbers here: https://en.wikipedia.org/wiki/Catalan_number https://oeis.org/A000108/ */ #include /// for assert #include /// for std::uint64_t #include /// for std::size_t #include /// for std::transform_reduce #include /// for std::vector /** * @brief computes and caches Catalan numbers */ class catalan_numbers { using value_type = std::uint64_t; std::vector known{1, 1}; value_type compute_next() { return std::transform_reduce(known.begin(), known.end(), known.rbegin(), static_cast(), std::plus<>(), std::multiplies<>()); } void add() { known.push_back(this->compute_next()); } public: /** * @brief computes the n-th Catalan number and updates the cache. * @return the n-th Catalan number */ value_type get(std::size_t n) { while (known.size() <= n) { this->add(); } return known[n]; } }; void test_catalan_numbers_up_to_20() { // data verified with https://oeis.org/A000108/ catalan_numbers cn; assert(cn.get(0) == 1ULL); assert(cn.get(1) == 1ULL); assert(cn.get(2) == 2ULL); assert(cn.get(3) == 5ULL); assert(cn.get(4) == 14ULL); assert(cn.get(5) == 42ULL); assert(cn.get(6) == 132ULL); assert(cn.get(7) == 429ULL); assert(cn.get(8) == 1430ULL); assert(cn.get(9) == 4862ULL); assert(cn.get(10) == 16796ULL); assert(cn.get(11) == 58786ULL); assert(cn.get(12) == 208012ULL); assert(cn.get(13) == 742900ULL); assert(cn.get(14) == 2674440ULL); assert(cn.get(15) == 9694845ULL); assert(cn.get(16) == 35357670ULL); assert(cn.get(17) == 129644790ULL); assert(cn.get(18) == 477638700ULL); assert(cn.get(19) == 1767263190ULL); assert(cn.get(20) == 6564120420ULL); } void test_catalan_numbers_25() { // data verified with https://oeis.org/A000108/ catalan_numbers cn; assert(cn.get(25) == 4861946401452ULL); } int main() { test_catalan_numbers_up_to_20(); test_catalan_numbers_25(); }