Files
C-Plus-Plus/math/eulers_totient_function.cpp
2020-03-29 17:36:33 +05:30

44 lines
935 B
C++

/// C++ Program to find Euler Totient Function
#include<iostream>
/**
Euler Totient Function also know as phi function.
phi(n) = phi(p1^a1).phi(p2^a2)...
where p1, p2,... are prime factor of n.
3 Euler's Property:
1. phi(prime_no) = prime_no-1
2. phi(prime_no^k) = (prime_no^k - prime_no^(k-1))
3. phi(a,b) = phi(a). phi(b) where a and b are relative primes.
Applying this 3 property on the first equation.
phi(n) = n. (1-1/p1). (1-1/p2). ...
where p1,p2... are prime factors.
Hence Implementation in O(sqrt(n)).
*/
/// Function to caculate euler totient function
int phiFunction(int n) {
int result = n;
for (ll i=2; i*i <= n; i++) {
if (n%i == 0) {
while (n%i == 0) {
n /= i;
}
result -= result/i;
}
}
if (n > 1) result -= result/n;
return result;
}
int main() {
int n;
std::cin >> n;
std::cout << phiFunction(n) << endl;
}