Files
C-Plus-Plus/data_structures/sparse_table.cpp
Mann Patel 4e95217016 fixed header postion
suggested change

Co-authored-by: David Leal <halfpacho@gmail.com>
2021-06-06 08:31:08 +05:30

139 lines
3.8 KiB
C++

/**
*
* @file
* @brief Implementation of Sparse Table
*
* @author [manncodes](https://github.com/manncodes)
*
* @details
* Sparse Table is a data structure, that allows answering range queries.
* It can answer most range queries in O(logn), but its true power is answering
* range minimum queries (or equivalent range maximum queries). For those
* queries it can compute the answer in O(1) time. The only drawback of this
* data structure is, that it can only be used on immutable arrays. This means,
* that the array cannot be changed between two queries.
*
* If any element in the array changes, the complete data structure has to be
* recomputed.
*
* @warning this sparse table is made for min(a1,a2,...an) duplicate invariant
* function. This implementation can be changed to other functions like
* gcd(),lcm(),max() by changing few lines of code.
*/
/**
* @namespace data_structures
* @brief Data Structures algorithms
*/
namespace data_structures {
/**
* @namespace sparse_table
* @brief Implementation of Sparse Table for function : min()
*
*/
namespace sparse_table {
/**
* @brief A struct to represent sparse table
*
*/
struct Sparse_table {
// N : the maximum size of the array.
// M : ceil(log2(N)).
const static int N = 12345, M = 14;
// The array to compute its sparse table.
int n;
std::array<int, N> a;
//
// Sparse table related variables.
//
// ST[j][i] : the sparse table value (min, max, ...etc) in the interval [i,
// i + (2^j) - 1]. LOG[i] : floor(log2(i)).
std::array<std::array<int, N>, M> ST;
std::array<int, N> LOG;
/**
*
* Builds the sparse table for computing min/max/gcd/lcm/...etc
* for any contiguous sub-segment of the array.
*
* This is an example of computing the index of the minimum value.
*
* Complexity: O(n.log(n))
*/
void buildST() {
LOG[0] = -1;
for (int i = 0; i < n; ++i) {
ST[0][i] = i;
LOG[i + 1] = LOG[i] + !(i & (i + 1));
}
for (int j = 1; (1 << j) <= n; ++j) {
for (int i = 0; (i + (1 << j)) <= n; ++i) {
int x = ST[j - 1][i];
int y = ST[j - 1][i + (1 << (j - 1))];
ST[j][i] = (a[x] <= a[y] ? x : y);
}
}
}
/**
* Queries the sparse table for the value of the interval [l, r]
* (i.e. from l to r inclusive).
*
* Complexity: O(1)
*
* @param l the left index of the range (inclusive).
* @param r the right index of the range (inclusive).
*
* @return the computed value of the given interval.
*/
int query(int l, int r) {
int g = LOG[r - l + 1];
int x = ST[g][l];
int y = ST[g][r - (1 << g) + 1];
return (a[x] <= a[y] ? x : y);
}
};
} // namespace sparse_table
} // namespace data_structures
/**
* @brief testcase for sparse_table
*/
static void test() {
std::array<int, 10> testcase = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int testcase_size = sizeof(testcase) / sizeof(testcase[0]);
data_structures::sparse_table::Sparse_table st{};
// copying testcase to the struct
std::copy(std::begin(testcase), std::end(testcase), std::begin(st.a));
st.n = testcase_size;
// precomputing sparse tree
st.buildST();
// pass queries of form [l,r]
assert(st.query(1, 9) == 1); // as 1 is smallest from 1..9
assert(st.query(2, 6) == 2); // as 2 is smallest from 2..6
assert(st.query(3, 8) == 3); // as 3 is smallest from 3..8
std::cout << "Testcase passed!" << std::endl;
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[]) {
test(); // execute the tests
return 0;
}