Files
C-Plus-Plus/math/eulers_totient_function.cpp
2020-03-29 17:26:45 +05:30

44 lines
880 B
C++

#include<bits/stdc++.h>
using namespace std;
/**
Euler Totient Function also know as phi function.
phi(n) = phi(p1^a1).phi(p2^a2)...
where p1, p2,... are prime factor of n.
3 Euler's Property:
1. phi(prime_no) = prime_no-1
2. phi(prime_no^k) = (prime_no^k - prime_no^(k-1))
3. phi(a,b) = phi(a). phi(b) where a and b are relative primes.
Applying this 3 property on the first equation.
phi(n) = n. (1-1/p1). (1-1/p2). ...
where p1,p2... are prime factors.
Hence Implementation in O(sqrt(n)).
*/
int phiFunction (int n ) {
int result = n ;
for ( ll i=2 ; i*i <= n ; i++ ) {
if ( n%i == 0 ) {
while ( n%i == 0 ) {
n /= i ;
}
result -= result/i ;
}
}
if ( n > 1 ) result -= result/n ;
return result ;
}
int main() {
int n ;
cin >> n ;
cout << phiFunction ( n ) << endl ;
}