mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-04 02:56:40 +08:00
* feat: Add Duval's algorithm for the lexicographically smallest rotation in a sequence. * fixes. * fixes.
119 lines
3.3 KiB
C++
119 lines
3.3 KiB
C++
/**
|
|
* @file duval.cpp
|
|
* @brief Implementation of [Duval's algorithm](https://en.wikipedia.org/wiki/Lyndon_word).
|
|
*
|
|
* @details
|
|
* Duval's algorithm is an algorithm to find the lexicographically smallest
|
|
* rotation of a string. It is based on the concept of Lyndon words.
|
|
* Lyndon words are defined as the lexicographically smallest string in a
|
|
* rotation equivalence class. A rotation equivalence class is a set of strings
|
|
* that can be obtained by rotating a string. For example, the rotation
|
|
* equivalence class of "abc" is {"abc", "bca", "cab"}. The lexicographically
|
|
* smallest string in this class is "abc".
|
|
*
|
|
* Duval's algorithm works by iterating over the string and finding the
|
|
* smallest rotation of the string that is a Lyndon word. This is done by
|
|
* comparing the string with its suffixes and finding the smallest suffix that
|
|
* is lexicographically smaller than the string. This suffix is then added to
|
|
* the result and the process is repeated with the remaining string.
|
|
* The algorithm has a time complexity of O(n) where n is the length of the
|
|
* string.
|
|
*
|
|
* @note While Lyndon words are described in the context of strings,
|
|
* Duval's algorithm can be used to find the lexicographically smallest cyclic
|
|
* shift of any sequence of comparable elements.
|
|
*
|
|
* @author [Amine Ghoussaini](https://github.com/aminegh20)
|
|
*/
|
|
|
|
#include <array> /// for std::array
|
|
#include <cassert> /// for assert
|
|
#include <cstddef> /// for std::size_t
|
|
#include <deque> /// for std::deque
|
|
#include <iostream> /// for std::cout and std::endl
|
|
#include <string> /// for std::string
|
|
#include <vector> /// for std::vector
|
|
|
|
/**
|
|
* @brief string manipulation algorithms
|
|
* @namespace
|
|
*/
|
|
namespace string {
|
|
/**
|
|
* @brief Find the lexicographically smallest cyclic shift of a sequence.
|
|
* @tparam T type of the sequence
|
|
* @param s the sequence
|
|
* @returns the 0-indexed position of the least cyclic shift of the sequence
|
|
*/
|
|
template <typename T>
|
|
size_t duval(const T& s) {
|
|
size_t n = s.size();
|
|
size_t i = 0, ans = 0;
|
|
while (i < n) {
|
|
ans = i;
|
|
size_t j = i + 1, k = i;
|
|
while (j < (n + n) && s[j % n] >= s[k % n]) {
|
|
if (s[k % n] < s[j % n]) {
|
|
k = i;
|
|
} else {
|
|
k++;
|
|
}
|
|
j++;
|
|
}
|
|
while (i <= k) {
|
|
i += j - k;
|
|
}
|
|
}
|
|
return ans;
|
|
// returns 0-indexed position of the least cyclic shift
|
|
}
|
|
|
|
} // namespace string
|
|
|
|
/**
|
|
* @brief self test implementation
|
|
* returns void
|
|
*/
|
|
static void test() {
|
|
using namespace string;
|
|
|
|
// Test 1
|
|
std::string s1 = "abcab";
|
|
assert(duval(s1) == 3);
|
|
|
|
// Test 2
|
|
std::string s2 = "011100";
|
|
assert(duval(s2) == 4);
|
|
|
|
// Test 3
|
|
std::vector<int> v = {5, 2, 1, 3, 4};
|
|
assert(duval(v) == 2);
|
|
|
|
// Test 4
|
|
std::array<int, 5> a = {1, 2, 3, 4, 5};
|
|
assert(duval(a) == 0);
|
|
|
|
// Test 5
|
|
std::deque<char> d = {'a', 'z', 'c', 'a', 'b'};
|
|
assert(duval(d) == 3);
|
|
|
|
// Test 6
|
|
std::string s3;
|
|
assert(duval(s3) == 0);
|
|
|
|
// Test 7
|
|
std::vector<int> v2 = {5, 2, 1, 3, -4};
|
|
assert(duval(v2) == 4);
|
|
|
|
std::cout << "All tests passed!" << std::endl;
|
|
}
|
|
|
|
/**
|
|
* @brief main function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main() {
|
|
test(); // run self test implementations
|
|
return 0;
|
|
}
|