mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-08 13:06:57 +08:00
* Create Unbounded_knapsack.cpp * Update Unbounded_knapsack.cpp Documentation done. * Update dynamic_programming/Unbounded_knapsack.cpp Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> * Update dynamic_programming/Unbounded_knapsack.cpp Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> * Update dynamic_programming/Unbounded_knapsack.cpp Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> * Update dynamic_programming/Unbounded_knapsack.cpp Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> * Delete dynamic_programming/Unbounded_knapsack.cpp * Create Unbounded_0_1_Knapsack.cpp * Update Unbounded_0_1_Knapsack.cpp * Update Unbounded_0_1_Knapsack.cpp * docs: add docs for main * Update dynamic_programming/Unbounded_0_1_Knapsack.cpp Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> * Update dynamic_programming/Unbounded_0_1_Knapsack.cpp Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> * Update Unbounded_0_1_Knapsack.cpp * Update Unbounded_0_1_Knapsack.cpp * Update Unbounded_0_1_Knapsack.cpp * Update dynamic_programming/Unbounded_0_1_Knapsack.cpp Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> * Update Unbounded_0_1_Knapsack.cpp * Update Unbounded_0_1_Knapsack.cpp --------- Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
152 lines
6.0 KiB
C++
152 lines
6.0 KiB
C++
/**
|
|
* @file
|
|
* @brief Implementation of the Unbounded 0/1 Knapsack Problem
|
|
*
|
|
* @details
|
|
* The Unbounded 0/1 Knapsack problem allows taking unlimited quantities of each item.
|
|
* The goal is to maximize the total value without exceeding the given knapsack capacity.
|
|
* Unlike the 0/1 knapsack, where each item can be taken only once, in this variation,
|
|
* any item can be picked any number of times as long as the total weight stays within
|
|
* the knapsack's capacity.
|
|
*
|
|
* Given a set of N items, each with a weight and a value, represented by the arrays
|
|
* `wt` and `val` respectively, and a knapsack with a weight limit W, the task is to
|
|
* fill the knapsack to maximize the total value.
|
|
*
|
|
* @note weight and value of items is greater than zero
|
|
*
|
|
* ### Algorithm
|
|
* The approach uses dynamic programming to build a solution iteratively.
|
|
* A 2D array is used for memoization to store intermediate results, allowing
|
|
* the function to avoid redundant calculations.
|
|
*
|
|
* @author [Sanskruti Yeole](https://github.com/yeolesanskruti)
|
|
* @see dynamic_programming/0_1_knapsack.cpp
|
|
*/
|
|
|
|
#include <iostream> // Standard input-output stream
|
|
#include <vector> // Standard library for using dynamic arrays (vectors)
|
|
#include <cassert> // For using assert function to validate test cases
|
|
#include <cstdint> // For fixed-width integer types like std::uint16_t
|
|
|
|
/**
|
|
* @namespace dynamic_programming
|
|
* @brief Namespace for dynamic programming algorithms
|
|
*/
|
|
namespace dynamic_programming {
|
|
|
|
/**
|
|
* @namespace Knapsack
|
|
* @brief Implementation of unbounded 0-1 knapsack problem
|
|
*/
|
|
namespace unbounded_knapsack {
|
|
|
|
/**
|
|
* @brief Recursive function to calculate the maximum value obtainable using
|
|
* an unbounded knapsack approach.
|
|
*
|
|
* @param i Current index in the value and weight vectors.
|
|
* @param W Remaining capacity of the knapsack.
|
|
* @param val Vector of values corresponding to the items.
|
|
* @note "val" data type can be changed according to the size of the input.
|
|
* @param wt Vector of weights corresponding to the items.
|
|
* @note "wt" data type can be changed according to the size of the input.
|
|
* @param dp 2D vector for memoization to avoid redundant calculations.
|
|
* @return The maximum value that can be obtained for the given index and capacity.
|
|
*/
|
|
std::uint16_t KnapSackFilling(std::uint16_t i, std::uint16_t W,
|
|
const std::vector<std::uint16_t>& val,
|
|
const std::vector<std::uint16_t>& wt,
|
|
std::vector<std::vector<int>>& dp) {
|
|
if (i == 0) {
|
|
if (wt[0] <= W) {
|
|
return (W / wt[0]) * val[0]; // Take as many of the first item as possible
|
|
} else {
|
|
return 0; // Can't take the first item
|
|
}
|
|
}
|
|
if (dp[i][W] != -1) return dp[i][W]; // Return result if available
|
|
|
|
int nottake = KnapSackFilling(i - 1, W, val, wt, dp); // Value without taking item i
|
|
int take = 0;
|
|
if (W >= wt[i]) {
|
|
take = val[i] + KnapSackFilling(i, W - wt[i], val, wt, dp); // Value taking item i
|
|
}
|
|
return dp[i][W] = std::max(take, nottake); // Store and return the maximum value
|
|
}
|
|
|
|
/**
|
|
* @brief Wrapper function to initiate the unbounded knapsack calculation.
|
|
*
|
|
* @param N Number of items.
|
|
* @param W Maximum weight capacity of the knapsack.
|
|
* @param val Vector of values corresponding to the items.
|
|
* @param wt Vector of weights corresponding to the items.
|
|
* @return The maximum value that can be obtained for the given capacity.
|
|
*/
|
|
std::uint16_t unboundedKnapsack(std::uint16_t N, std::uint16_t W,
|
|
const std::vector<std::uint16_t>& val,
|
|
const std::vector<std::uint16_t>& wt) {
|
|
if(N==0)return 0; // Expect 0 since no items
|
|
std::vector<std::vector<int>> dp(N, std::vector<int>(W + 1, -1)); // Initialize memoization table
|
|
return KnapSackFilling(N - 1, W, val, wt, dp); // Start the calculation
|
|
}
|
|
|
|
} // unbounded_knapsack
|
|
|
|
} // dynamic_programming
|
|
|
|
/**
|
|
* @brief self test implementation
|
|
* @return void
|
|
*/
|
|
static void tests() {
|
|
// Test Case 1
|
|
std::uint16_t N1 = 4; // Number of items
|
|
std::vector<std::uint16_t> wt1 = {1, 3, 4, 5}; // Weights of the items
|
|
std::vector<std::uint16_t> val1 = {6, 1, 7, 7}; // Values of the items
|
|
std::uint16_t W1 = 8; // Maximum capacity of the knapsack
|
|
// Test the function and assert the expected output
|
|
assert(unboundedKnapsack(N1, W1, val1, wt1) == 48);
|
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N1, W1, val1, wt1) << std::endl;
|
|
|
|
// Test Case 2
|
|
std::uint16_t N2 = 3; // Number of items
|
|
std::vector<std::uint16_t> wt2 = {10, 20, 30}; // Weights of the items
|
|
std::vector<std::uint16_t> val2 = {60, 100, 120}; // Values of the items
|
|
std::uint16_t W2 = 5; // Maximum capacity of the knapsack
|
|
// Test the function and assert the expected output
|
|
assert(unboundedKnapsack(N2, W2, val2, wt2) == 0);
|
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N2, W2, val2, wt2) << std::endl;
|
|
|
|
// Test Case 3
|
|
std::uint16_t N3 = 3; // Number of items
|
|
std::vector<std::uint16_t> wt3 = {2, 4, 6}; // Weights of the items
|
|
std::vector<std::uint16_t> val3 = {5, 11, 13};// Values of the items
|
|
std::uint16_t W3 = 27;// Maximum capacity of the knapsack
|
|
// Test the function and assert the expected output
|
|
assert(unboundedKnapsack(N3, W3, val3, wt3) == 27);
|
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N3, W3, val3, wt3) << std::endl;
|
|
|
|
// Test Case 4
|
|
std::uint16_t N4 = 0; // Number of items
|
|
std::vector<std::uint16_t> wt4 = {}; // Weights of the items
|
|
std::vector<std::uint16_t> val4 = {}; // Values of the items
|
|
std::uint16_t W4 = 10; // Maximum capacity of the knapsack
|
|
assert(unboundedKnapsack(N4, W4, val4, wt4) == 0);
|
|
std::cout << "Maximum Knapsack value for empty arrays: " << unboundedKnapsack(N4, W4, val4, wt4) << std::endl;
|
|
|
|
std::cout << "All test cases passed!" << std::endl;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief main function
|
|
* @return 0 on successful exit
|
|
*/
|
|
int main() {
|
|
tests(); // Run self test implementation
|
|
return 0;
|
|
}
|
|
|