mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-04 02:56:40 +08:00
...`backtracking` folder, and minor fixes in the `others/iterative_tree_traversals.cpp` and the `math/check_prime.cpp` files.
128 lines
4.2 KiB
C++
128 lines
4.2 KiB
C++
/**
|
|
* @file
|
|
* @brief prints the assigned colors
|
|
* using [Graph Coloring](https://en.wikipedia.org/wiki/Graph_coloring) algorithm
|
|
*
|
|
* @details
|
|
* In graph theory, graph coloring is a special case of graph labeling;
|
|
* it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints.
|
|
* In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color;
|
|
* this is called a vertex coloring. Similarly, an edge coloring assigns
|
|
* a color to each edge so that no two adjacent edges are of the same color,
|
|
* and a face coloring of a planar graph assigns a color to each face or
|
|
* region so that no two faces that share a boundary have the same color.
|
|
*
|
|
* @author [Anup Kumar Panwar](https://github.com/AnupKumarPanwar)
|
|
* @author [David Leal](https://github.com/Panquesito7)
|
|
*/
|
|
#include <iostream> /// for IO operations
|
|
#include <array> /// for std::array
|
|
#include <vector> /// for std::vector
|
|
|
|
/**
|
|
* @namespace backtracking
|
|
* @brief Backtracking algorithms
|
|
*/
|
|
namespace backtracking {
|
|
/**
|
|
* @namespace graph_coloring
|
|
* @brief Functions for the [Graph Coloring](https://en.wikipedia.org/wiki/Graph_coloring) algorith,
|
|
*/
|
|
namespace graph_coloring {
|
|
/**
|
|
* @brief A utility function to print the solution
|
|
* @tparam V number of vertices in the graph
|
|
* @param color array of colors assigned to the nodes
|
|
*/
|
|
template <size_t V>
|
|
void printSolution(const std::array <int, V>& color) {
|
|
std::cout << "Following are the assigned colors\n";
|
|
for (auto &col : color) {
|
|
std::cout << col;
|
|
}
|
|
std::cout << "\n";
|
|
}
|
|
|
|
/**
|
|
* @brief Utility function to check if the current color assignment is safe for
|
|
* vertex v
|
|
* @tparam V number of vertices in the graph
|
|
* @param v index of graph vertex to check
|
|
* @param graph matrix of graph nonnectivity
|
|
* @param color vector of colors assigned to the graph nodes/vertices
|
|
* @param c color value to check for the node `v`
|
|
* @returns `true` if the color is safe to be assigned to the node
|
|
* @returns `false` if the color is not safe to be assigned to the node
|
|
*/
|
|
template <size_t V>
|
|
bool isSafe(int v, const std::array<std::array <int, V>, V>& graph, const std::array <int, V>& color, int c) {
|
|
for (int i = 0; i < V; i++) {
|
|
if (graph[v][i] && c == color[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Recursive utility function to solve m coloring problem
|
|
* @tparam V number of vertices in the graph
|
|
* @param graph matrix of graph nonnectivity
|
|
* @param m number of colors
|
|
* @param [in,out] color description // used in,out to notify in documentation
|
|
* that this parameter gets modified by the function
|
|
* @param v index of graph vertex to check
|
|
*/
|
|
template <size_t V>
|
|
void graphColoring(const std::array<std::array <int, V>, V>& graph, int m, std::array <int, V> color, int v) {
|
|
// base case:
|
|
// If all vertices are assigned a color then return true
|
|
if (v == V) {
|
|
printSolution<V>(color);
|
|
return;
|
|
}
|
|
|
|
// Consider this vertex v and try different colors
|
|
for (int c = 1; c <= m; c++) {
|
|
// Check if assignment of color c to v is fine
|
|
if (isSafe<V>(v, graph, color, c)) {
|
|
color[v] = c;
|
|
|
|
// recur to assign colors to rest of the vertices
|
|
graphColoring<V>(graph, m, color, v + 1);
|
|
|
|
// If assigning color c doesn't lead to a solution then remove it
|
|
color[v] = 0;
|
|
}
|
|
}
|
|
}
|
|
} // namespace graph_coloring
|
|
} // namespace backtracking
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main() {
|
|
// Create following graph and test whether it is 3 colorable
|
|
// (3)---(2)
|
|
// | / |
|
|
// | / |
|
|
// | / |
|
|
// (0)---(1)
|
|
|
|
const int V = 4; // number of vertices in the graph
|
|
std::array <std::array <int, V>, V> graph = {
|
|
std::array <int, V>({0, 1, 1, 1}),
|
|
std::array <int, V>({1, 0, 1, 0}),
|
|
std::array <int, V>({1, 1, 0, 1}),
|
|
std::array <int, V>({1, 0, 1, 0})
|
|
};
|
|
|
|
int m = 3; // Number of colors
|
|
std::array <int, V> color{};
|
|
|
|
backtracking::graph_coloring::graphColoring<V>(graph, m, color, 0);
|
|
return 0;
|
|
}
|