Files
C-Plus-Plus/data_structures/avltree.cpp
2023-01-27 22:44:25 +01:00

158 lines
4.0 KiB
C++

/**
* \file
* \brief A simple tree implementation using nodes
*
* \todo update code to use C++ STL library features and OO structure
* \warning This program is a poor implementation and does not utilize any of
* the C++ STL features.
*/
#include <algorithm>
#include <iostream>
#include <queue>
typedef struct node {
int data;
int height;
struct node *left;
struct node *right;
} node;
/** Create and return a new Node */
node *createNode(int data) {
node *nn = new node();
nn->data = data;
nn->height = 0;
nn->left = NULL;
nn->right = NULL;
return nn;
}
/** Returns height of tree */
int height(node *root) {
if (root == NULL)
return 0;
return 1 + std::max(height(root->left), height(root->right));
}
/** Returns difference between height of left and right subtree */
int getBalance(node *root) { return height(root->left) - height(root->right); }
/** Returns Node after Right Rotation */
node *rightRotate(node *root) {
node *t = root->left;
node *u = t->right;
t->right = root;
root->left = u;
return t;
}
/** Returns Node after Left Rotation */
node *leftRotate(node *root) {
node *t = root->right;
node *u = t->left;
t->left = root;
root->right = u;
return t;
}
/** Returns node with minimum value in the tree */
node *minValue(node *root) {
if (root->left == NULL)
return root;
return minValue(root->left);
}
/** Balanced Insertion */
node *insert(node *root, int item) {
if (root == NULL)
return createNode(item);
if (item < root->data)
root->left = insert(root->left, item);
else
root->right = insert(root->right, item);
int b = getBalance(root);
if (b > 1) {
if (getBalance(root->left) < 0)
root->left = leftRotate(root->left); // Left-Right Case
return rightRotate(root); // Left-Left Case
} else if (b < -1) {
if (getBalance(root->right) > 0)
root->right = rightRotate(root->right); // Right-Left Case
return leftRotate(root); // Right-Right Case
}
return root;
}
/** Balanced Deletion */
node *deleteNode(node *root, int key) {
if (root == NULL)
return root;
if (key < root->data)
root->left = deleteNode(root->left, key);
else if (key > root->data)
root->right = deleteNode(root->right, key);
else {
// Node to be deleted is leaf node or have only one Child
if (!root->right) {
node *temp = root->left;
delete (root);
root = NULL;
return temp;
} else if (!root->left) {
node *temp = root->right;
delete (root);
root = NULL;
return temp;
}
// Node to be deleted have both left and right subtrees
node *temp = minValue(root->right);
root->data = temp->data;
root->right = deleteNode(root->right, temp->data);
}
// Balancing Tree after deletion
return root;
}
/** Calls delete on every node */
void deleteAllNodes(const node *const root) {
if (root) {
deleteAllNodes(root->left);
deleteAllNodes(root->right);
delete root;
}
}
/** LevelOrder (Breadth First Search) */
void levelOrder(node *root) {
std::queue<node *> q;
q.push(root);
while (!q.empty()) {
root = q.front();
std::cout << root->data << " ";
q.pop();
if (root->left)
q.push(root->left);
if (root->right)
q.push(root->right);
}
}
/** Main function */
int main() {
// Testing AVL Tree
node *root = NULL;
int i;
for (i = 1; i <= 7; i++) root = insert(root, i);
std::cout << "LevelOrder: ";
levelOrder(root);
root = deleteNode(root, 1); // Deleting key with value 1
std::cout << "\nLevelOrder: ";
levelOrder(root);
root = deleteNode(root, 4); // Deletin key with value 4
std::cout << "\nLevelOrder: ";
levelOrder(root);
deleteAllNodes(root);
return 0;
}