mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-03 18:46:50 +08:00
* Feat: Add Strassen's matrix multiplication * updating DIRECTORY.md * Fix cpp lint error * updating DIRECTORY.md * clang-format and clang-tidy fixes for02439b57* Fix windows error * Add namespaces * updating DIRECTORY.md * Proper documentation * Reduce the matrix size. * updating DIRECTORY.md * clang-format and clang-tidy fixes for0545555aCo-authored-by: toastedbreadandomelette <toastedbreadandomelette@gmail.com> Co-authored-by: github-actions[bot] <github-actions@users.noreply.github.com> Co-authored-by: David Leal <halfpacho@gmail.com>
228 lines
7.8 KiB
C++
228 lines
7.8 KiB
C++
/**
|
|
* @author [Jason Nardoni](https://github.com/JNardoni)
|
|
* @file
|
|
*
|
|
* @brief
|
|
* [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) to
|
|
*find the Minimum Spanning Tree
|
|
*
|
|
*
|
|
* @details
|
|
* Boruvka's algorithm is a greepy algorithm to find the MST by starting with
|
|
*small trees, and combining them to build bigger ones.
|
|
* 1. Creates a group for every vertex.
|
|
* 2. looks through each edge of every vertex for the smallest weight. Keeps
|
|
*track of the smallest edge for each of the current groups.
|
|
* 3. Combine each group with the group it shares its smallest edge, adding the
|
|
*smallest edge to the MST.
|
|
* 4. Repeat step 2-3 until all vertices are combined into a single group.
|
|
*
|
|
* It assumes that the graph is connected. Non-connected edges can be
|
|
*represented using 0 or INT_MAX
|
|
*
|
|
*/
|
|
|
|
#include <cassert> /// for assert
|
|
#include <climits> /// for INT_MAX
|
|
#include <iostream> /// for IO operations
|
|
#include <vector> /// for std::vector
|
|
|
|
/**
|
|
* @namespace greedy_algorithms
|
|
* @brief Greedy Algorithms
|
|
*/
|
|
namespace greedy_algorithms {
|
|
/**
|
|
* @namespace boruvkas_minimum_spanning_tree
|
|
* @brief Functions for the [Borůvkas
|
|
* Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) implementation
|
|
*/
|
|
namespace boruvkas_minimum_spanning_tree {
|
|
/**
|
|
* @brief Recursively returns the vertex's parent at the root of the tree
|
|
* @param parent the array that will be checked
|
|
* @param v vertex to find parent of
|
|
* @returns the parent of the vertex
|
|
*/
|
|
int findParent(std::vector<std::pair<int, int>> parent, const int v) {
|
|
if (parent[v].first != v) {
|
|
parent[v].first = findParent(parent, parent[v].first);
|
|
}
|
|
|
|
return parent[v].first;
|
|
}
|
|
|
|
/**
|
|
* @brief the implementation of boruvka's algorithm
|
|
* @param adj a graph adjancency matrix stored as 2d vectors.
|
|
* @returns the MST as 2d vectors
|
|
*/
|
|
std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
|
size_t size = adj.size();
|
|
size_t total_groups = size;
|
|
|
|
if (size <= 1) {
|
|
return adj;
|
|
}
|
|
|
|
// Stores the current Minimum Spanning Tree. As groups are combined, they
|
|
// are added to the MST
|
|
std::vector<std::vector<int>> MST(size, std::vector<int>(size, INT_MAX));
|
|
for (int i = 0; i < size; i++) {
|
|
MST[i][i] = 0;
|
|
}
|
|
|
|
// Step 1: Create a group for each vertex
|
|
|
|
// Stores the parent of the vertex and its current depth, both initialized
|
|
// to 0
|
|
std::vector<std::pair<int, int>> parent(size, std::make_pair(0, 0));
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
parent[i].first =
|
|
i; // Sets parent of each vertex to itself, depth remains 0
|
|
}
|
|
|
|
// Repeat until all are in a single group
|
|
while (total_groups > 1) {
|
|
std::vector<std::pair<int, int>> smallest_edge(
|
|
size, std::make_pair(-1, -1)); // Pairing: start node, end node
|
|
|
|
// Step 2: Look throught each vertex for its smallest edge, only using
|
|
// the right half of the adj matrix
|
|
for (int i = 0; i < size; i++) {
|
|
for (int j = i + 1; j < size; j++) {
|
|
if (adj[i][j] == INT_MAX || adj[i][j] == 0) { // No connection
|
|
continue;
|
|
}
|
|
|
|
// Finds the parents of the start and end points to make sure
|
|
// they arent in the same group
|
|
int parentA = findParent(parent, i);
|
|
int parentB = findParent(parent, j);
|
|
|
|
if (parentA != parentB) {
|
|
// Grabs the start and end points for the first groups
|
|
// current smallest edge
|
|
int start = smallest_edge[parentA].first;
|
|
int end = smallest_edge[parentA].second;
|
|
|
|
// If there is no current smallest edge, or the new edge is
|
|
// smaller, records the new smallest
|
|
if (start == -1 || adj[i][j] < adj[start][end]) {
|
|
smallest_edge[parentA].first = i;
|
|
smallest_edge[parentA].second = j;
|
|
}
|
|
|
|
// Does the same for the second group
|
|
start = smallest_edge[parentB].first;
|
|
end = smallest_edge[parentB].second;
|
|
|
|
if (start == -1 || adj[j][i] < adj[start][end]) {
|
|
smallest_edge[parentB].first = j;
|
|
smallest_edge[parentB].second = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 3: Combine the groups based off their smallest edge
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
// Makes sure the smallest edge exists
|
|
if (smallest_edge[i].first != -1) {
|
|
// Start and end points for the groups smallest edge
|
|
int start = smallest_edge[i].first;
|
|
int end = smallest_edge[i].second;
|
|
|
|
// Parents of the two groups - A is always itself
|
|
int parentA = i;
|
|
int parentB = findParent(parent, end);
|
|
|
|
// Makes sure the two nodes dont share the same parent. Would
|
|
// happen if the two groups have been
|
|
// merged previously through a common shortest edge
|
|
if (parentA == parentB) {
|
|
continue;
|
|
}
|
|
|
|
// Tries to balance the trees as much as possible as they are
|
|
// merged. The parent of the shallower
|
|
// tree will be pointed to the parent of the deeper tree.
|
|
if (parent[parentA].second < parent[parentB].second) {
|
|
parent[parentB].first = parentA; // New parent
|
|
parent[parentB].second++; // Increase depth
|
|
} else {
|
|
parent[parentA].first = parentB;
|
|
parent[parentA].second++;
|
|
}
|
|
// Add the connection to the MST, using both halves of the adj
|
|
// matrix
|
|
MST[start][end] = adj[start][end];
|
|
MST[end][start] = adj[end][start];
|
|
total_groups--; // one fewer group
|
|
}
|
|
}
|
|
}
|
|
return MST;
|
|
}
|
|
|
|
/**
|
|
* @brief counts the sum of edges in the given tree
|
|
* @param adj 2D vector adjacency matrix
|
|
* @returns the int size of the tree
|
|
*/
|
|
int test_findGraphSum(std::vector<std::vector<int>> adj) {
|
|
size_t size = adj.size();
|
|
int sum = 0;
|
|
|
|
// Moves through one side of the adj matrix, counting the sums of each edge
|
|
for (int i = 0; i < size; i++) {
|
|
for (int j = i + 1; j < size; j++) {
|
|
if (adj[i][j] < INT_MAX) {
|
|
sum += adj[i][j];
|
|
}
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
} // namespace boruvkas_minimum_spanning_tree
|
|
} // namespace greedy_algorithms
|
|
|
|
/**
|
|
* @brief Self-test implementations
|
|
* @returns void
|
|
*/
|
|
static void tests() {
|
|
std::cout << "Starting tests...\n\n";
|
|
std::vector<std::vector<int>> graph = {
|
|
{0, 5, INT_MAX, 3, INT_MAX}, {5, 0, 2, INT_MAX, 5},
|
|
{INT_MAX, 2, 0, INT_MAX, 3}, {3, INT_MAX, INT_MAX, 0, INT_MAX},
|
|
{INT_MAX, 5, 3, INT_MAX, 0},
|
|
};
|
|
std::vector<std::vector<int>> MST =
|
|
greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
|
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(
|
|
MST) == 13);
|
|
std::cout << "1st test passed!" << std::endl;
|
|
|
|
graph = {{0, 2, 0, 6, 0},
|
|
{2, 0, 3, 8, 5},
|
|
{0, 3, 0, 0, 7},
|
|
{6, 8, 0, 0, 9},
|
|
{0, 5, 7, 9, 0}};
|
|
MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
|
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(
|
|
MST) == 16);
|
|
std::cout << "2nd test passed!" << std::endl;
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main() {
|
|
tests(); // run self-test implementations
|
|
return 0;
|
|
}
|