Files
MoviePilot/app/agent/tools/impl/query_workflows.py
jxxghp 9cb79a7827 feat: enhance MoviePilotTool with customizable tool messages
- Added `get_tool_message` method to `MoviePilotTool` and its subclasses for generating user-friendly execution messages based on parameters.
- Improved message formatting for various tools, including `AddDownloadTool`, `AddSubscribeTool`, `DeleteDownloadTool`, and others, to provide clearer feedback during operations.
- This enhancement allows for more personalized and informative messages, improving user experience during tool execution.
2025-11-18 12:42:24 +08:00

129 lines
5.8 KiB
Python

"""查询工作流工具"""
import json
from typing import Optional, Type
from pydantic import BaseModel, Field
from app.agent.tools.base import MoviePilotTool
from app.db import AsyncSessionFactory
from app.db.workflow_oper import WorkflowOper
from app.log import logger
class QueryWorkflowsInput(BaseModel):
"""查询工作流工具的输入参数模型"""
explanation: str = Field(..., description="Clear explanation of why this tool is being used in the current context")
state: Optional[str] = Field("all", description="Filter workflows by state: 'W' for waiting, 'R' for running, 'P' for paused, 'S' for success, 'F' for failed, 'all' for all workflows (default: 'all')")
name: Optional[str] = Field(None, description="Filter workflows by name (partial match, optional)")
trigger_type: Optional[str] = Field("all", description="Filter workflows by trigger type: 'timer' for scheduled, 'event' for event-triggered, 'manual' for manual, 'all' for all types (default: 'all')")
class QueryWorkflowsTool(MoviePilotTool):
name: str = "query_workflows"
description: str = "Query workflow list and status. Shows workflow name, description, trigger type, state, execution count, and other workflow details. Supports filtering by state, name, and trigger type."
args_schema: Type[BaseModel] = QueryWorkflowsInput
def get_tool_message(self, **kwargs) -> Optional[str]:
"""根据查询参数生成友好的提示消息"""
state = kwargs.get("state", "all")
name = kwargs.get("name")
trigger_type = kwargs.get("trigger_type", "all")
parts = ["正在查询工作流"]
if state != "all":
state_map = {"W": "等待", "R": "运行中", "P": "暂停", "S": "成功", "F": "失败"}
parts.append(f"状态: {state_map.get(state, state)}")
if trigger_type != "all":
trigger_map = {"timer": "定时触发", "event": "事件触发", "manual": "手动触发"}
parts.append(f"触发类型: {trigger_map.get(trigger_type, trigger_type)}")
if name:
parts.append(f"名称: {name}")
return " | ".join(parts) if len(parts) > 1 else parts[0]
async def run(self, state: Optional[str] = "all",
name: Optional[str] = None,
trigger_type: Optional[str] = "all", **kwargs) -> str:
logger.info(f"执行工具: {self.name}, 参数: state={state}, name={name}, trigger_type={trigger_type}")
try:
# 获取数据库会话
async with AsyncSessionFactory() as db:
workflow_oper = WorkflowOper(db)
workflows = await workflow_oper.async_list()
# 过滤工作流
filtered_workflows = []
for wf in workflows:
# 按状态过滤
if state != "all" and wf.state != state:
continue
# 按触发类型过滤
if trigger_type != "all":
if trigger_type == "timer" and wf.trigger_type not in ["timer", None]:
continue
elif trigger_type == "event" and wf.trigger_type != "event":
continue
elif trigger_type == "manual" and wf.trigger_type != "manual":
continue
# 按名称过滤(部分匹配)
if name and wf.name and name.lower() not in wf.name.lower():
continue
filtered_workflows.append(wf)
if not filtered_workflows:
return "未找到相关工作流"
# 转换为字典格式,只保留关键信息
simplified_workflows = []
for wf in filtered_workflows:
# 状态说明
state_map = {
"W": "等待",
"R": "运行中",
"P": "暂停",
"S": "成功",
"F": "失败"
}
state_desc = state_map.get(wf.state, wf.state)
# 触发类型说明
trigger_type_map = {
"timer": "定时触发",
"event": "事件触发",
"manual": "手动触发"
}
trigger_type_desc = trigger_type_map.get(wf.trigger_type, wf.trigger_type or "定时触发")
simplified = {
"id": wf.id,
"name": wf.name,
"description": wf.description,
"trigger_type": trigger_type_desc,
"state": state_desc,
"run_count": wf.run_count,
"timer": wf.timer,
"event_type": wf.event_type,
"add_time": wf.add_time,
"last_time": wf.last_time,
"current_action": wf.current_action
}
# 如果有结果,添加结果信息
if wf.result:
simplified["result"] = wf.result
simplified_workflows.append(simplified)
result_json = json.dumps(simplified_workflows, ensure_ascii=False, indent=2)
return result_json
except Exception as e:
logger.error(f"查询工作流失败: {e}", exc_info=True)
return f"查询工作流时发生错误: {str(e)}"