Files
MoviePilot/app/api/endpoints/search.py

262 lines
13 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from typing import List, Any, Optional
from fastapi import APIRouter, Depends, Body
from app import schemas
from app.chain.media import MediaChain
from app.chain.search import SearchChain
from app.chain.ai_recommend import AIRecommendChain
from app.core.config import settings
from app.core.event import eventmanager
from app.core.metainfo import MetaInfo
from app.core.security import verify_token
from app.log import logger
from app.schemas import MediaRecognizeConvertEventData
from app.schemas.types import MediaType, ChainEventType
router = APIRouter()
@router.get("/last", summary="查询搜索结果", response_model=List[schemas.Context])
async def search_latest(_: schemas.TokenPayload = Depends(verify_token)) -> Any:
"""
查询搜索结果
"""
torrents = await SearchChain().async_last_search_results() or []
return [torrent.to_dict() for torrent in torrents]
@router.get("/media/{mediaid}", summary="精确搜索资源", response_model=schemas.Response)
async def search_by_id(mediaid: str,
mtype: Optional[str] = None,
area: Optional[str] = "title",
title: Optional[str] = None,
year: Optional[str] = None,
season: Optional[str] = None,
sites: Optional[str] = None,
_: schemas.TokenPayload = Depends(verify_token)) -> Any:
"""
根据TMDBID/豆瓣ID精确搜索站点资源 tmdb:/douban:/bangumi:
"""
# 取消正在运行的AI推荐会清除数据库缓存
AIRecommendChain().cancel_ai_recommend()
if mtype:
media_type = MediaType(mtype)
else:
media_type = None
if season:
media_season = int(season)
else:
media_season = None
if sites:
site_list = [int(site) for site in sites.split(",") if site]
else:
site_list = None
torrents = None
media_chain = MediaChain()
search_chain = SearchChain()
# 根据前缀识别媒体ID
if mediaid.startswith("tmdb:"):
tmdbid = int(mediaid.replace("tmdb:", ""))
if settings.RECOGNIZE_SOURCE == "douban":
# 通过TMDBID识别豆瓣ID
doubaninfo = await media_chain.async_get_doubaninfo_by_tmdbid(tmdbid=tmdbid, mtype=media_type)
if doubaninfo:
torrents = await search_chain.async_search_by_id(doubanid=doubaninfo.get("id"),
mtype=media_type, area=area, season=media_season,
sites=site_list, cache_local=True)
else:
return schemas.Response(success=False, message="未识别到豆瓣媒体信息")
else:
torrents = await search_chain.async_search_by_id(tmdbid=tmdbid, mtype=media_type, area=area,
season=media_season,
sites=site_list, cache_local=True)
elif mediaid.startswith("douban:"):
doubanid = mediaid.replace("douban:", "")
if settings.RECOGNIZE_SOURCE == "themoviedb":
# 通过豆瓣ID识别TMDBID
tmdbinfo = await media_chain.async_get_tmdbinfo_by_doubanid(doubanid=doubanid, mtype=media_type)
if tmdbinfo:
if tmdbinfo.get('season') and not media_season:
media_season = tmdbinfo.get('season')
torrents = await search_chain.async_search_by_id(tmdbid=tmdbinfo.get("id"),
mtype=media_type, area=area, season=media_season,
sites=site_list, cache_local=True)
else:
return schemas.Response(success=False, message="未识别到TMDB媒体信息")
else:
torrents = await search_chain.async_search_by_id(doubanid=doubanid, mtype=media_type, area=area,
season=media_season,
sites=site_list, cache_local=True)
elif mediaid.startswith("bangumi:"):
bangumiid = int(mediaid.replace("bangumi:", ""))
if settings.RECOGNIZE_SOURCE == "themoviedb":
# 通过BangumiID识别TMDBID
tmdbinfo = await media_chain.async_get_tmdbinfo_by_bangumiid(bangumiid=bangumiid)
if tmdbinfo:
torrents = await search_chain.async_search_by_id(tmdbid=tmdbinfo.get("id"),
mtype=media_type, area=area, season=media_season,
sites=site_list, cache_local=True)
else:
return schemas.Response(success=False, message="未识别到TMDB媒体信息")
else:
# 通过BangumiID识别豆瓣ID
doubaninfo = await media_chain.async_get_doubaninfo_by_bangumiid(bangumiid=bangumiid)
if doubaninfo:
torrents = await search_chain.async_search_by_id(doubanid=doubaninfo.get("id"),
mtype=media_type, area=area, season=media_season,
sites=site_list, cache_local=True)
else:
return schemas.Response(success=False, message="未识别到豆瓣媒体信息")
else:
# 未知前缀,广播事件解析媒体信息
event_data = MediaRecognizeConvertEventData(
mediaid=mediaid,
convert_type=settings.RECOGNIZE_SOURCE
)
event = await eventmanager.async_send_event(ChainEventType.MediaRecognizeConvert, event_data)
# 使用事件返回的上下文数据
if event and event.event_data:
event_data: MediaRecognizeConvertEventData = event.event_data
if event_data.media_dict:
search_id = event_data.media_dict.get("id")
if event_data.convert_type == "themoviedb":
torrents = await search_chain.async_search_by_id(tmdbid=search_id, mtype=media_type, area=area,
season=media_season, cache_local=True)
elif event_data.convert_type == "douban":
torrents = await search_chain.async_search_by_id(doubanid=search_id, mtype=media_type, area=area,
season=media_season, cache_local=True)
else:
if not title:
return schemas.Response(success=False, message="未知的媒体ID")
# 使用名称识别兜底
meta = MetaInfo(title)
if year:
meta.year = year
if media_type:
meta.type = media_type
if media_season:
meta.type = MediaType.TV
meta.begin_season = media_season
mediainfo = await media_chain.async_recognize_media(meta=meta)
if mediainfo:
if settings.RECOGNIZE_SOURCE == "themoviedb":
torrents = await search_chain.async_search_by_id(tmdbid=mediainfo.tmdb_id, mtype=media_type,
area=area,
season=media_season, cache_local=True)
else:
torrents = await search_chain.async_search_by_id(doubanid=mediainfo.douban_id, mtype=media_type,
area=area,
season=media_season, cache_local=True)
# 返回搜索结果
if not torrents:
return schemas.Response(success=False, message="未搜索到任何资源")
else:
return schemas.Response(success=True, data=[torrent.to_dict() for torrent in torrents])
@router.get("/title", summary="模糊搜索资源", response_model=schemas.Response)
async def search_by_title(keyword: Optional[str] = None,
page: Optional[int] = 0,
sites: Optional[str] = None,
_: schemas.TokenPayload = Depends(verify_token)) -> Any:
"""
根据名称模糊搜索站点资源,支持分页,关键词为空是返回首页资源
"""
# 取消正在运行的AI推荐并清除数据库缓存
AIRecommendChain().cancel_ai_recommend()
torrents = await SearchChain().async_search_by_title(
title=keyword, page=page,
sites=[int(site) for site in sites.split(",") if site] if sites else None,
cache_local=True
)
if not torrents:
return schemas.Response(success=False, message="未搜索到任何资源")
return schemas.Response(success=True, data=[torrent.to_dict() for torrent in torrents])
@router.post("/recommend", summary="AI推荐资源", response_model=schemas.Response)
async def recommend_search_results(
filtered_indices: Optional[List[int]] = Body(None, embed=True, description="筛选后的索引列表"),
check_only: bool = Body(False, embed=True, description="仅检查状态,不启动新任务"),
force: bool = Body(False, embed=True, description="强制重新推荐,清除旧结果"),
_: schemas.TokenPayload = Depends(verify_token)) -> Any:
"""
AI推荐资源 - 轮询接口
前端轮询此接口,发送筛选后的索引(如果有筛选)
后端根据请求变化自动取消旧任务并启动新任务
参数:
- filtered_indices: 筛选后的索引列表(可选,为空或不提供时使用所有结果)
- check_only: 仅检查状态(首次打开页面时使用,避免触发不必要的重新推理)
- force: 强制重新推荐(清除旧结果并重新启动)
返回数据结构:
{
"success": bool,
"message": string, // 错误信息(仅在错误时存在)
"data": {
"status": string, // 状态: disabled | idle | running | completed | error
"results": array // 推荐结果仅status=completed时存在
}
}
"""
# 从缓存获取上次搜索结果
results = await SearchChain().async_last_search_results() or []
if not results:
return schemas.Response(success=False, message="没有可用的搜索结果", data={
"status": "error"
})
recommend_chain = AIRecommendChain()
# 如果是强制模式,先取消并清除旧结果,然后直接启动新任务
if force:
# 检查功能是否启用
if not settings.AI_AGENT_ENABLE or not settings.AI_RECOMMEND_ENABLED:
return schemas.Response(success=True, data={
"status": "disabled"
})
logger.info("收到新推荐请求,清除旧结果并启动新任务")
recommend_chain.cancel_ai_recommend()
recommend_chain.start_recommend_task(filtered_indices, len(results), results)
# 直接返回运行中状态
return schemas.Response(success=True, data={
"status": "running"
})
# 如果是仅检查模式,不传递 filtered_indices避免触发请求变化检测
if check_only:
# 返回当前运行状态,不做任何任务启动或取消操作
current_status = recommend_chain.get_current_status_only()
# 如果有错误将错误信息放到message中
if current_status.get("status") == "error":
error_msg = current_status.pop("error", "未知错误")
return schemas.Response(success=False, message=error_msg, data=current_status)
return schemas.Response(success=True, data=current_status)
# 获取当前状态(会检测请求是否变化)
status_data = recommend_chain.get_status(filtered_indices, len(results))
# 如果功能未启用,直接返回禁用状态
if status_data.get("status") == "disabled":
return schemas.Response(success=True, data=status_data)
# 如果是空闲状态,启动新任务
if status_data["status"] == "idle":
recommend_chain.start_recommend_task(filtered_indices, len(results), results)
# 立即返回运行中状态
return schemas.Response(success=True, data={
"status": "running"
})
# 如果有错误将错误信息放到message中
if status_data.get("status") == "error":
error_msg = status_data.pop("error", "未知错误")
return schemas.Response(success=False, message=error_msg, data=status_data)
# 返回当前状态
return schemas.Response(success=True, data=status_data)