Files
MoviePilot/app/core/cache.py
2025-03-23 22:35:37 +08:00

577 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import inspect
import json
import pickle
import threading
from abc import ABC, abstractmethod
from functools import wraps
from typing import Any, Dict, Optional
from urllib.parse import quote
import redis
from cachetools import TTLCache
from cachetools.keys import hashkey
from app.core.config import settings
from app.log import logger
# 默认缓存区
DEFAULT_CACHE_REGION = "DEFAULT"
lock = threading.Lock()
class CacheBackend(ABC):
"""
缓存后端基类,定义通用的缓存接口
"""
@abstractmethod
def set(self, key: str, value: Any, ttl: int, region: Optional[str] = DEFAULT_CACHE_REGION, **kwargs) -> None:
"""
设置缓存
:param key: 缓存的键
:param value: 缓存的值
:param ttl: 缓存的存活时间,单位秒
:param region: 缓存的区
:param kwargs: 其他参数
"""
pass
@abstractmethod
def exists(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> bool:
"""
判断缓存键是否存在
:param key: 缓存的键
:param region: 缓存的区
:return: 存在返回 True否则返回 False
"""
pass
@abstractmethod
def get(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> Any:
"""
获取缓存
:param key: 缓存的键
:param region: 缓存的区
:return: 返回缓存的值,如果缓存不存在返回 None
"""
pass
@abstractmethod
def delete(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> None:
"""
删除缓存
:param key: 缓存的键
:param region: 缓存的区
"""
pass
@abstractmethod
def clear(self, region: Optional[str] = None) -> None:
"""
清除指定区域的缓存或全部缓存
:param region: 缓存的区
"""
pass
@abstractmethod
def close(self) -> None:
"""
关闭缓存连接
"""
pass
@staticmethod
def get_region(region: Optional[str] = DEFAULT_CACHE_REGION):
"""
获取缓存的区
"""
return f"region:{region}" if region else "region:default"
@staticmethod
def get_cache_key(func, args, kwargs):
"""
获取缓存的键,通过哈希函数对函数的参数进行处理
:param func: 被装饰的函数
:param args: 位置参数
:param kwargs: 关键字参数
:return: 缓存键
"""
signature = inspect.signature(func)
# 绑定传入的参数并应用默认值
bound = signature.bind(*args, **kwargs)
bound.apply_defaults()
# 忽略第一个参数,如果它是实例(self)或类(cls)
parameters = list(signature.parameters.keys())
if parameters and parameters[0] in ("self", "cls"):
bound.arguments.pop(parameters[0], None)
# 按照函数签名顺序提取参数值列表
keys = [
bound.arguments[param] for param in signature.parameters if param in bound.arguments
]
# 使用有序参数生成缓存键
return f"{func.__name__}_{hashkey(*keys)}"
class CacheToolsBackend(CacheBackend):
"""
基于 `cachetools.TTLCache` 实现的缓存后端
特性:
- 支持动态设置缓存的 TTLTime To Live存活时间和最大条目数Maxsize
- 缓存实例按区域region划分不同 region 拥有独立的缓存实例
- 同一 region 共享相同的 TTL 和 Maxsize设置时只能作用于整个 region
限制:
- 不支持按 `key` 独立隔离 TTL 和 Maxsize仅支持作用于 region 级别
"""
def __init__(self, maxsize: Optional[int] = 1000, ttl: Optional[int] = 1800):
"""
初始化缓存实例
:param maxsize: 缓存的最大条目数
:param ttl: 默认缓存存活时间,单位秒
"""
self.maxsize = maxsize
self.ttl = ttl
# 存储各个 region 的缓存实例region -> TTLCache
self._region_caches: Dict[str, TTLCache] = {}
def __get_region_cache(self, region: str) -> Optional[TTLCache]:
"""
获取指定区域的缓存实例,如果不存在则返回 None
"""
region = self.get_region(region)
return self._region_caches.get(region)
def set(self, key: str, value: Any, ttl: Optional[int] = None,
region: Optional[str] = DEFAULT_CACHE_REGION, **kwargs) -> None:
"""
设置缓存值支持每个 key 独立配置 TTL 和 Maxsize
:param key: 缓存的键
:param value: 缓存的值
:param ttl: 缓存的存活时间,单位秒如果未传入则使用默认值
:param region: 缓存的区
:param kwargs: maxsize: 缓存的最大条目数如果未传入则使用默认值
"""
ttl = ttl or self.ttl
maxsize = kwargs.get("maxsize", self.maxsize)
region = self.get_region(region)
# 如果该 key 尚未有缓存实例,则创建一个新的 TTLCache 实例
region_cache = self._region_caches.setdefault(region, TTLCache(maxsize=maxsize, ttl=ttl))
# 设置缓存值
with lock:
region_cache[key] = value
def exists(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> bool:
"""
判断缓存键是否存在
:param key: 缓存的键
:param region: 缓存的区
:return: 存在返回 True否则返回 False
"""
region_cache = self.__get_region_cache(region)
if region_cache is None:
return False
return key in region_cache
def get(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> Any:
"""
获取缓存的值
:param key: 缓存的键
:param region: 缓存的区
:return: 返回缓存的值,如果缓存不存在返回 None
"""
region_cache = self.__get_region_cache(region)
if region_cache is None:
return None
return region_cache.get(key)
def delete(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> None:
"""
删除缓存
:param key: 缓存的键
:param region: 缓存的区
"""
region_cache = self.__get_region_cache(region)
if region_cache is None:
return None
with lock:
del region_cache[key]
def clear(self, region: Optional[str] = None) -> None:
"""
清除指定区域的缓存或全部缓存
:param region: 缓存的区
"""
if region:
# 清理指定缓存区
region_cache = self.__get_region_cache(region)
if region_cache:
with lock:
region_cache.clear()
logger.info(f"Cleared cache for region: {region}")
else:
# 清除所有区域的缓存
for region_cache in self._region_caches.values():
with lock:
region_cache.clear()
logger.info("Cleared all cache")
def close(self) -> None:
"""
内存缓存不需要关闭资源
"""
pass
class RedisBackend(CacheBackend):
"""
基于 Redis 实现的缓存后端,支持通过 Redis 存储缓存
特性:
- 支持动态设置缓存的 TTLTime To Live存活时间
- 支持分区域region管理缓存不同的 region 采用独立的命名空间
- 支持自定义最大内存限制maxmemory和内存淘汰策略如 allkeys-lru
限制:
- 由于 Redis 的分布式特性,写入和读取可能受到网络延迟的影响
- Pickle 反序列化可能存在安全风险,需进一步重构调用来源,避免复杂对象缓存
"""
# 类型缓存集合,针对非容器简单类型
_complex_serializable_types = set()
_simple_serializable_types = set()
def __init__(self, redis_url: Optional[str] = "redis://localhost", ttl: Optional[int] = 1800):
"""
初始化 Redis 缓存实例
:param redis_url: Redis 服务的 URL
:param ttl: 缓存的存活时间,单位秒
"""
self.redis_url = redis_url
self.ttl = ttl
try:
self.client = redis.Redis.from_url(
redis_url,
decode_responses=False,
socket_timeout=30,
socket_connect_timeout=5,
health_check_interval=60,
)
# 测试连接,确保 Redis 可用
self.client.ping()
logger.debug(f"Successfully connected to Redis")
self.set_memory_limit()
except Exception as e:
logger.error(f"Failed to connect to Redis: {e}")
raise RuntimeError("Redis connection failed") from e
def set_memory_limit(self, policy: Optional[str] = "allkeys-lru"):
"""
动态设置 Redis 最大内存和内存淘汰策略
:param policy: 淘汰策略(如 'allkeys-lru'
"""
try:
# 如果有显式值,则直接使用,为 0 时说明不限制,如果未配置,开启 BIG_MEMORY_MODE 时为 "1024mb",未开启时为 "256mb"
maxmemory = settings.CACHE_REDIS_MAXMEMORY or ("1024mb" if settings.BIG_MEMORY_MODE else "256mb")
self.client.config_set("maxmemory", maxmemory)
self.client.config_set("maxmemory-policy", policy)
logger.debug(f"Redis maxmemory set to {maxmemory}, policy: {policy}")
except Exception as e:
logger.error(f"Failed to set Redis maxmemory or policy: {e}")
@staticmethod
def is_container_type(t):
return t in (list, dict, tuple, set)
@classmethod
def serialize(cls, value: Any) -> bytes:
"""
将值序列化为二进制数据,根据序列化方式标识格式
"""
vt = type(value)
# 针对非容器类型使用缓存策略
if not cls.is_container_type(vt):
# 如果已知需要复杂序列化
if vt in cls._complex_serializable_types:
return b"PICKLE" + b"\x00" + pickle.dumps(value)
# 如果已知可以简单序列化
if vt in cls._simple_serializable_types:
json_data = json.dumps(value).encode("utf-8")
return b"JSON" + b"\x00" + json_data
# 对于未知的非容器类型,尝试简单序列化,如抛出异常,再使用复杂序列化
try:
json_data = json.dumps(value).encode("utf-8")
cls._simple_serializable_types.add(vt)
return b"JSON" + b"\x00" + json_data
except TypeError:
cls._complex_serializable_types.add(vt)
return b"PICKLE" + b"\x00" + pickle.dumps(value)
# 针对容器类型,每次尝试简单序列化,不使用缓存
else:
try:
json_data = json.dumps(value).encode("utf-8")
return b"JSON" + b"\x00" + json_data
except TypeError:
return b"PICKLE" + b"\x00" + pickle.dumps(value)
@classmethod
def deserialize(cls, value: bytes) -> Any:
"""
将二进制数据反序列化为原始值,根据格式标识区分序列化方式
"""
format_marker, data = value.split(b"\x00", 1)
if format_marker == b"JSON":
return json.loads(data.decode("utf-8"))
elif format_marker == b"PICKLE":
return pickle.loads(data)
else:
raise ValueError("Unknown serialization format")
# @staticmethod
# def serialize(value: Any) -> bytes:
# return msgpack.packb(value, use_bin_type=True)
#
# @staticmethod
# def deserialize(value: bytes) -> Any:
# return msgpack.unpackb(value, raw=False)
def get_redis_key(self, region: str, key: str) -> str:
"""
获取缓存 Key
"""
# 使用 region 作为缓存键的一部分
region = self.get_region(quote(region))
return f"{region}:key:{quote(key)}"
def set(self, key: str, value: Any, ttl: Optional[int] = None,
region: Optional[str] = DEFAULT_CACHE_REGION, **kwargs) -> None:
"""
设置缓存
:param key: 缓存的键
:param value: 缓存的值
:param ttl: 缓存的存活时间,单位秒如果未传入则使用默认值
:param region: 缓存的区
:param kwargs: kwargs
"""
try:
ttl = ttl or self.ttl
redis_key = self.get_redis_key(region, key)
# 对值进行序列化
serialized_value = self.serialize(value)
kwargs.pop("maxsize", None)
self.client.set(redis_key, serialized_value, ex=ttl, **kwargs)
except Exception as e:
logger.error(f"Failed to set key: {key} in region: {region}, error: {e}")
def exists(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> bool:
"""
判断缓存键是否存在
:param key: 缓存的键
:param region: 缓存的区
:return: 存在返回 True否则返回 False
"""
try:
redis_key = self.get_redis_key(region, key)
return self.client.exists(redis_key) == 1
except Exception as e:
logger.error(f"Failed to exists key: {key} region: {region}, error: {e}")
return False
def get(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> Optional[Any]:
"""
获取缓存的值
:param key: 缓存的键
:param region: 缓存的区
:return: 返回缓存的值,如果缓存不存在返回 None
"""
try:
redis_key = self.get_redis_key(region, key)
value = self.client.get(redis_key)
if value is not None:
return self.deserialize(value) # noqa
return None
except Exception as e:
logger.error(f"Failed to get key: {key} in region: {region}, error: {e}")
return None
def delete(self, key: str, region: Optional[str] = DEFAULT_CACHE_REGION) -> None:
"""
删除缓存
:param key: 缓存的键
:param region: 缓存的区
"""
try:
redis_key = self.get_redis_key(region, key)
self.client.delete(redis_key)
except Exception as e:
logger.error(f"Failed to delete key: {key} in region: {region}, error: {e}")
def clear(self, region: Optional[str] = None) -> None:
"""
清除指定区域的缓存或全部缓存
:param region: 缓存的区
"""
try:
if region:
cache_region = self.get_region(quote(region))
redis_key = f"{cache_region}:key:*"
# self.client.delete(*self.client.keys(redis_key))
with self.client.pipeline() as pipe:
for key in self.client.scan_iter(redis_key):
pipe.delete(key)
pipe.execute()
logger.info(f"Cleared Redis cache for region: {region}")
else:
self.client.flushdb()
logger.info("Cleared all Redis cache")
except Exception as e:
logger.error(f"Failed to clear cache, region: {region}, error: {e}")
def close(self) -> None:
"""
关闭 Redis 客户端的连接池
"""
if self.client:
self.client.close()
def get_cache_backend(maxsize: Optional[int] = 1000, ttl: Optional[int] = 1800) -> CacheBackend:
"""
根据配置获取缓存后端实例
:param maxsize: 缓存的最大条目数
:param ttl: 缓存的默认存活时间,单位秒
:return: 返回缓存后端实例
"""
cache_type = settings.CACHE_BACKEND_TYPE
logger.debug(f"Cache backend type from settings: {cache_type}")
if cache_type == "redis":
redis_url = settings.CACHE_BACKEND_URL
if redis_url:
try:
logger.debug(f"Attempting to use RedisBackend with URL: {redis_url}, TTL: {ttl}")
return RedisBackend(redis_url=redis_url, ttl=ttl)
except RuntimeError:
logger.warning("Falling back to CacheToolsBackend due to Redis connection failure.")
else:
logger.debug("Cache backend type is redis, but no valid REDIS_URL found. "
"Falling back to CacheToolsBackend.")
# 如果不是 Redis回退到内存缓存
logger.debug(f"Using CacheToolsBackend with default maxsize: {maxsize}, TTL: {ttl}")
return CacheToolsBackend(maxsize=maxsize, ttl=ttl)
def cached(region: Optional[str] = None, maxsize: Optional[int] = 1000, ttl: Optional[int] = 1800,
skip_none: Optional[bool] = True, skip_empty: Optional[bool] = False):
"""
自定义缓存装饰器,支持为每个 key 动态传递 maxsize 和 ttl
:param region: 缓存的区
:param maxsize: 缓存的最大条目数,默认值为 1000
:param ttl: 缓存的存活时间,单位秒,默认值为 1800
:param skip_none: 跳过 None 缓存,默认为 True
:param skip_empty: 跳过空值缓存(如 None, [], {}, "", set()),默认为 False
:return: 装饰器函数
"""
def should_cache(value: Any) -> bool:
"""
判断是否应该缓存结果,如果返回值是 None 或空值则不缓存
:param value: 要判断的缓存值
:return: 是否缓存结果
"""
if skip_none and value is None:
return False
# if skip_empty and value in [None, [], {}, "", set()]:
if skip_empty and not value:
return False
return True
def is_valid_cache_value(cache_key: str, cached_value: Any, cache_region: str) -> bool:
"""
判断指定的值是否为一个有效的缓存值
:param cache_key: 缓存的键
:param cached_value: 缓存的值
:param cache_region: 缓存的区
:return: 若值是有效的缓存值返回 True否则返回 False
"""
# 如果 skip_none 为 False且 value 为 None需要判断缓存实际是否存在
if not skip_none and cached_value is None:
if not cache_backend.exists(key=cache_key, region=cache_region):
return False
return True
def decorator(func):
# 获取缓存区
cache_region = region if region is not None else f"{func.__module__}.{func.__name__}"
@wraps(func)
def wrapper(*args, **kwargs):
# 获取缓存键
cache_key = cache_backend.get_cache_key(func, args, kwargs)
# 尝试获取缓存
cached_value = cache_backend.get(cache_key, region=cache_region)
if should_cache(cached_value) and is_valid_cache_value(cache_key, cached_value, cache_region):
return cached_value
# 执行函数并缓存结果
result = func(*args, **kwargs)
# 判断是否需要缓存
if not should_cache(result):
return result
# 设置缓存(如果有传入的 maxsize 和 ttl则覆盖默认值
cache_backend.set(cache_key, result, ttl=ttl, maxsize=maxsize, region=cache_region)
return result
def cache_clear():
"""
清理缓存区
"""
# 清理缓存区
cache_backend.clear(region=cache_region)
wrapper.cache_region = cache_region
wrapper.cache_clear = cache_clear
return wrapper
return decorator
# 缓存后端实例
cache_backend = get_cache_backend()
def close_cache() -> None:
"""
关闭缓存后端连接并清理资源
"""
try:
if cache_backend:
cache_backend.close()
logger.info("Cache backend closed successfully.")
except Exception as e:
logger.info(f"Error while closing cache backend: {e}")