modify some mistakes.
This commit is contained in:
|
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
|
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 26 KiB |
|
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 27 KiB |
@@ -112,9 +112,9 @@ $$
|
||||
cost(h_\theta(x), y) = \left\{
|
||||
\begin{aligned}
|
||||
-log(h_\theta(x))&, y = 1\\\\
|
||||
-log(1 - h_theta(x))&, y = 0
|
||||
-log(1 - h_\theta(x))&, y = 0
|
||||
\end{aligned}
|
||||
\right
|
||||
\right.
|
||||
$$
|
||||
|
||||
可以分别画出$y = 0$与$y = 1$的损失函数的图像,以获得一个比较直观的理解。容易看到,当$y = 1$时,对输出的预测值$h_\theta(x)$越接近一,则损失函数的值越小;预测值越接近零,则损失函数的值越大。并且当$h_\theta(x) = 1$时,$cost(h_\theta(x), 1) = 0$,当$h_\theta(x) = 0$时,$cost(h_\theta(x), 1) = +\infty$。该性质是容易理解的,即预测值与真值越接近,则相应的损失就越小。$y = 0$时也有类似的性质。
|
||||
@@ -239,7 +239,7 @@ H = \frac{1}{m}\left[
|
||||
\right]
|
||||
$$
|
||||
|
||||
容易看出(?,
|
||||
容易看出(?
|
||||
|
||||
$$
|
||||
H = \frac{1}{m}(GX)^TGX
|
||||
@@ -270,7 +270,7 @@ $$
|
||||
为了解决过拟合,仍然可以对此前的对数损失函数添加**正则化项**,正则化后的损失函数$J(\theta)$
|
||||
|
||||
$$
|
||||
J(\theta) = -\frac{1}{m}[\Sigma_{i = 1}^my^{(i)}log(h_\theta(x^{(i)})) + (1-y^{(i)})log(1 - logh_\theta(x^{(i)}))] + \frac{\lambda}{2m}\Sigma_{i = j}^n\theta_j^2
|
||||
J(\theta) = -\frac{1}{m}[\Sigma_{i = 1}^my^{(i)}log(h_\theta(x^{(i)})) + (1-y^{(i)})log(1 - logh_\theta(x^{(i)}))] + \frac{\lambda}{2m}\Sigma_{j = 1}^n\theta_j^2
|
||||
$$
|
||||
|
||||
下面以一个具体实例,直观地展示过拟合现象以及正则化对过拟合的影响。这个实例是一个二类分类问题,输入$x$是一个二维向量,即具有两个特征$x_1, x_2$。首先对原始数据进行可视化,如下图所示:
|
||||
|
||||
Reference in New Issue
Block a user