add manuscripts on machine learning 'ml_scripts.md', add 912v1.0.tex, update words.
This commit is contained in:
102
912v1.0.tex
Normal file
102
912v1.0.tex
Normal file
@@ -0,0 +1,102 @@
|
||||
\documentclass[UTF8,12pt]{ctexart}
|
||||
\usepackage{ctex}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{graphicx}
|
||||
\CTEXsetup[format={\Large\bfseries}]{section}
|
||||
\title{\kaishu 912回忆版}
|
||||
\author{by Shine Wong}
|
||||
\date{12/22}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\section{数据结构}
|
||||
|
||||
\subsection{判断题}
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item[1)]$log^nn = \Omega(n^{logn})$。
|
||||
\item[2)]对一棵AVL树进行插入,则至多会引起$\Omega(logn)$次局部调整操作。
|
||||
\item[3)]对一个理想随机输入的序列进行快速排序,则在平均情况下以及最坏情况下都可以达到$O(logn)$的时间复杂度性能。
|
||||
\item[4)]在理想随机输入的情况下,尽管完全二叉堆的删除操作的最坏时间复杂度有$O(logn)$,平均时间复杂度仅为$O(1)$而已。
|
||||
\item[5)]跳转表每一个节点所对应的塔的平均高度为$O(logn)$。\\
|
||||
\item[6)]采用基于比较的算法,可以在$O(n)$的时间内找出序列的前10\%大的元素。
|
||||
\item[7)]对一有向图进行DFS,共有$k$条边被标记为 BACKWARD,则该图中未必有$k$个环路。\\
|
||||
\item[8)]败者树相对于胜者树,具有更优的渐进时间复杂度性能。\\
|
||||
\item[9)]相对于闭散列,开散列可以更好地利用数据的局部性。\\
|
||||
\item[10)]...remain to be added
|
||||
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\subsection{单向选择题}
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item[1)]对一有向无环图,该图的拓扑排序序列恰好是DFS的$\underline{\hbox to 10mm{}}$\\
|
||||
A.\ 被发现的顺序\\
|
||||
B.\ 被发现的逆序\\
|
||||
C.\ 回溯的顺序\\
|
||||
D.\ 回溯的逆序
|
||||
|
||||
\item[2)]如果基数排序底层采用不稳定的排序算法,则所得的结果$\underline{\hbox to 10mm{}}$,并且基数排序的稳定性$\underline{\hbox to 10mm{}}$\\
|
||||
A.\ 不再正确 \ 不再保持\\
|
||||
B.\ 不再正确 \ 仍然保持\\
|
||||
C.\ 仍然正确 \ 不再保持\\
|
||||
D.\ 仍然正确 \ 仍然保持
|
||||
|
||||
\item[3)]逆波兰表达式$Blalala$的结果为2019,则中间缺失的操作符为\\
|
||||
A \ + \\
|
||||
B \ - \\
|
||||
C \ * \\
|
||||
D \ / \\
|
||||
E \ \^ \\
|
||||
F \ !
|
||||
|
||||
\item[4)]对于一个权重分别是1,1,2,3,5,8,13,21的字符集构造Huffman编码树,其中最大的深度为\\
|
||||
A.\ 6\\
|
||||
B.\ 7\\
|
||||
C.\ 8\\
|
||||
D.\ 9
|
||||
|
||||
\item[5)]含有$\underline{\hbox to 10mm{}}$个节点的真二叉树的数量,与2019对括号构成的合法表达式数量相同。\\
|
||||
A.\ 1009\\
|
||||
B.\ 1010\\
|
||||
C.\ 2019\\
|
||||
D.\ 4039
|
||||
|
||||
\item[6)]对一模式串HHBFHHBFHHBFSHH,考虑改进的next数组,则$next[14] - next[0] = \underline{\hbox to 10mm{}}$\\
|
||||
A.\ 2\\
|
||||
B.\ 3\\
|
||||
C.\ 4\\
|
||||
D.\ 5
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\subsection{证明题}
|
||||
|
||||
已知一棵二叉搜索树的先序和后序遍历序列,是否可以构造出它的层次遍历序列?是则给出证明,否则给出一个反例。(5分)
|
||||
|
||||
\subsection{程序设计题}
|
||||
|
||||
给出二叉树节点BinNode的定义如下:\\
|
||||
|
||||
\noindent class BinNode{\\
|
||||
public:\\
|
||||
\indent BinNode* parent;\\
|
||||
\indent BinNode* lc;\\
|
||||
\indent BinNode* rc;\\
|
||||
\indent int lsize;\\
|
||||
|
||||
\indent BinNode* zig(BinNode* x);//绕当前节点顺时针旋转,仍然返回旋转后根节点的左子树\\
|
||||
\indent BinNode* zag(BinNode* x);//绕当前节点顺时针旋转,仍然返回旋转后根节点的右子树\\
|
||||
}
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item[]
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\end{document}
|
||||
26
ml_scipts.md
Normal file
26
ml_scipts.md
Normal file
@@ -0,0 +1,26 @@
|
||||
Handscripts when studing Machine Learning
|
||||
=========================================
|
||||
|
||||
> 什么是机器学习?
|
||||
|
||||
注意三个点,即E, T, P。
|
||||
|
||||
> 监督学习与无监督学习之间的区别?
|
||||
|
||||
监督学习是指对于输入的数据,它所对应的输出是已知的。监督学习可以分为两类,即回归问题与分类问题,它们的区别在于输出是否是连续的。具体的例子有房价预测问题(回归问题),判断肿瘤是否是良性(分类问题)。
|
||||
|
||||
无监督学习的输入数据之间没有任何区别,每个输入数据都是等价的,并没有事先表明它的状态或者分类信息(比如房价或者恶性肿瘤),而是由机器来分辨不同数据的属性。典型的例子有`聚类问题`(clustering)以及鸡尾酒宴算法。
|
||||
|
||||
> 关于深度学习算法的一些思考。
|
||||
|
||||
人工神经元算法的设计乃是`线性内核`与`非线性激活`的叠加。根据`线性内核`的不同,可以分为`DNN`,`CNN`,`RNN`,它们分别适用于不同的场景。但是这种建模方法显然是不准确的,片面的,因为实际中的神经元对于各种场合的问题都可以很好的适用。这样,应该存在一种更好的方式来模拟神经元。
|
||||
|
||||
人工神经网络的精髓都在于对大脑中的神经元进行模拟。但是我在想神经元并非一定是解决问题的最高效的方法,虽然神经元经过了几十亿年的进化与自然选择,但它未必是解决现实问题的最优解,可能只是一个局部最优而已,alphaGo的例子就说明了这一点——人类数千年形成的围棋算法实际上只是局部最优解。
|
||||
|
||||
另一方面,让计算机模拟人脑也未必就是最好的方法。因此我在想,有没有可能跳出现有神经元的桎梏,开创出一个更优化的算法,这样说不定还可以反过来对人类的神经元进行改造。
|
||||
|
||||
> 梯度下降法存在的问题。
|
||||
|
||||
首先是学习率(learning rate)的选择。如果$\alpha$太小,则需要多次迭代才能找到局部最优解,需要较长的学习时间;而如果$\alpha$太大,则可能直越过最低点,导致无法收敛,甚至发散。
|
||||
|
||||
此外,显而易见的是,梯度下降法只能找到局部最优解,而非全局最优解。实际上,梯度下降法找到的解取决于初始位置的选择。然而,对于线性回归(linear regression)问题,则不存在这个问题,因为线性回归问题的代价函数是一个凸函数(convex function),即它只有一个极值点,该极值点就是它的全局最优解,因此使用梯度下降算法总是可以得到唯一的最优解。
|
||||
39
words.md
39
words.md
@@ -2066,3 +2066,42 @@ Some Words
|
||||
|
||||
- a pathological liar
|
||||
- He experiences chronic, almost pathological jealousy.
|
||||
|
||||
## 30th, December
|
||||
|
||||
+ spam
|
||||
> (n)unwanted email, ususually advertisements</br>
|
||||
> (v)to send someone advertisements by email that they do not want.
|
||||
|
||||
- Some Internet service providers block spam to subscribers.
|
||||
- He spammed the message to 30,000 addresses in a week.
|
||||
|
||||
+ tumor
|
||||
> (n)a mass of cell in the body that grow faster than usual and can cause illness.
|
||||
|
||||
- a malignant/benign tumor
|
||||
|
||||
+ malignant
|
||||
> (adj)a malignant disease or growth is cancer or is related to cancer, and is likely to be harmful.</br>
|
||||
> (adj)having a strong wish to do harm
|
||||
|
||||
- The process by which malignant cancer cells multiply isn't fully understood.
|
||||
- He developed a malignant hatred for the land of his birth.
|
||||
|
||||
+ benign
|
||||
> (adj)pleasant or kind; not harmful or severe</br>
|
||||
> (adj)a benign growth is not cancer and is not likely to be harmful
|
||||
|
||||
- a benign tumor
|
||||
- They are normally a more benign audience.
|
||||
- I just smiled benignly and stood back.
|
||||
|
||||
+ inventory
|
||||
> (n)a detailed list of all the things in a place.</br>
|
||||
> (n)the amount of goods a store or business has for sale at a particular time, or their value.
|
||||
|
||||
- About half of the shop's inventory was damaged in the tornado.
|
||||
- Before starting, he made an inventory of everything that was to stay.
|
||||
|
||||
+ tornado
|
||||
> (n)a strong, dangerous wind that forms itself into an upside-down spinning cone and is able to destroy buildings as it moves across the ground.
|
||||
|
||||
Reference in New Issue
Block a user