mirror of
https://github.com/Didnelpsun/Math.git
synced 2026-02-08 21:14:50 +08:00
更新不定积分的有理函数积分部分
This commit is contained in:
Binary file not shown.
@@ -21,6 +21,8 @@
|
||||
% 因为所以
|
||||
\usepackage{amsmath}
|
||||
% 数学公式
|
||||
\usepackage{pifont}
|
||||
% 圆圈序号
|
||||
\usepackage[colorlinks,linkcolor=black,urlcolor=blue]{hyperref}
|
||||
% 超链接
|
||||
\author{Didnelpsun}
|
||||
@@ -216,12 +218,44 @@ $=\dfrac{1}{3}x^3\arctan x-\dfrac{1}{6}x^2+\dfrac{1}{6}\ln(1+x^2)+C$。
|
||||
|
||||
当幂函数与三角函数在一起微分时,因为三角函数无论如何积分都不会被消去,所以应该优先消去幂函数部分,从而降低幂次。
|
||||
|
||||
如$\int x^a\sin x\,\textrm{d}x$,$\int x^a\cos x\,\textrm{d}x$。
|
||||
|
||||
\textbf{例题:}求$\int x\tan^2x\,\textrm{d}x$。
|
||||
|
||||
$=\int x(\sec^2-1)\,\textrm{d}x=\int x\,\textrm{d}(\tan x)-\dfrac{x^2}{2}=x\tan x+\ln\vert\cos x\vert-\dfrac{x^2}{2}+C$。
|
||||
|
||||
\subsubsection{多次分部}
|
||||
|
||||
对于一部分通过微分形式不会发生变化的函数,所以需要多次积分,然后利用等式求出目标值。
|
||||
|
||||
如:$\int e^x\sin x\,\textrm{d}x$,$\int e^x\cos x\,\textrm{d}x$。
|
||||
|
||||
\textbf{例题:}求$\int e^x\sin^2x\,\textrm{d}x$。
|
||||
|
||||
$=\sin^2x\cdot e^x-\int e^x\,\textrm{d}(\sin^2x)=\sin^2x\cdot e^x-\int e^x\cdot\sin 2x\,\textrm{d}x$
|
||||
|
||||
$=\sin^2x\cdot e^x-\int\sin2x\,\textrm{d}(e^x)=\sin^2x\cdot e^x-\sin2x\cdot e^x+\int e^x\,\textrm{d}(\sin2x)$
|
||||
|
||||
$=\sin^2x\cdot e^x-\sin2x\cdot e^x+2\int e^x\cdot\cos2x\,\textrm{d}x$ (\ding{172})
|
||||
|
||||
$=\sin^2x\cdot e^x-\sin2x\cdot e^x+2\int\cos2x\,\textrm{d}(e^x)$
|
||||
|
||||
$=\sin^2x\cdot e^x-\sin2x\cdot e^x+2e^x\cos2x-2\int e^x\,\textrm{d}(\cos2x)$
|
||||
|
||||
$=\sin^2x\cdot e^x-\sin2x\cdot e^x+2e^x\cos2x+4\int e^x\cdot\sin2x\,\textrm{d}x$
|
||||
|
||||
$=\sin^2x\cdot e^x-\sin2x\cdot e^x+2e^x\cos2x+4\int\sin2x\,\textrm{d}(e^x)$
|
||||
|
||||
$=\sin^2x\cdot e^x-\sin2x\cdot e^x+2e^x\cos2x+4\sin2x\cdot e^x-4\int e^x\,\textrm{d}(\sin2x)$
|
||||
|
||||
$=\sin^2x\cdot e^x-\sin2x\cdot e^x+2e^x\cos2x+4\sin2x\cdot e^x-8\int e^x\cdot\cos2x\,\textrm{d}x$ (\ding{173})
|
||||
|
||||
然后\ding{172}=\ding{173}:$\int e^x\cdot\cos2x\,\textrm{d}x=\dfrac{e^x(\cos2x+2\sin2x)}{5}+C$
|
||||
|
||||
代入\ding{172}:$=\dfrac{e^x(5\sin^2x-5\sin2x+2\cos2x+4\sin2x)}{5}+C$
|
||||
|
||||
$=\dfrac{e^x(5\sin^2x-\sin2x+2\cos2x)}{5}+C=e^x\left(\dfrac{1}{2}-\dfrac{1}{5}\sin2x-\dfrac{1}{10}\cos2x\right)+C$
|
||||
|
||||
\subsubsection{分部与换元}
|
||||
|
||||
分部积分法和换元积分法经常一起使用。
|
||||
@@ -236,6 +270,14 @@ $=3u^2e^u-6\int u\,\textrm{d}(e^u)=3u^2e^u-6ue^u+6\int e^u\,\textrm{d}u=3u^2e^u-
|
||||
|
||||
$=3e^u(u^2-2u+2)+C=3e^{\sqrt[3]{x}}(x^{\frac{2}{3}}-2x^{\frac{1}{3}}+2)+C$。
|
||||
|
||||
\textbf{例题:}求$\int e^{\sqrt{3x+9}}\,\textrm{d}x$。
|
||||
|
||||
令$\sqrt{3x+9}=u$,从而$x=\dfrac{1}{3}(u^2-9)$,$\textrm{d}x=\dfrac{2}{3}u\,\textrm{d}u$:
|
||||
|
||||
$=\displaystyle{\dfrac{2}{3}\int ue^u\,\textrm{d}u=\dfrac{2}{3}\int u\,\textrm{d}(e^u)=\dfrac{2}{3}ue^u-\int\dfrac{2}{3}e^u\,\textrm{d}u=\dfrac{2}{3}ue^u-\dfrac{2}{3}e^u+C}$
|
||||
|
||||
$=\dfrac{2}{3}e^{\sqrt{3x+9}}(\sqrt{3x+9}-1)+C$。
|
||||
|
||||
\subsection{有理积分}
|
||||
|
||||
\subsubsection{高阶多项式分配}
|
||||
|
||||
Binary file not shown.
@@ -229,16 +229,54 @@ $\therefore\int\sec^3x\,\textrm{d}x =\dfrac{\sec x\tan x+\ln\vert\sec x+\tan x\v
|
||||
|
||||
两个多项式的商$\dfrac{P(x)}{Q(x)}$被称为有理函数,或有理分式。
|
||||
|
||||
假设该多项式之间没有公因式,当$P(x)$的次数小于$Q(x)$的次数时村各位真分式,否则称为假分式。
|
||||
假设该多项式之间没有公因式,当$P(x)$的次数小于$Q(x)$的次数时称为真分式,否则称为假分式。
|
||||
|
||||
假分式可以分解为多项式与真分式之和。
|
||||
|
||||
真分式$\dfrac{P(x)}{Q(x)}$若可以分解为两个或多个多项式的乘积:$\dfrac{P(x)}{Q(x)}=\dfrac{P_1(x)}{Q_1(x)}+\dfrac{P_2(x)}{Q_2(x)}+\cdots$,则称为将真分式化为部分分式之和。
|
||||
真分式$\dfrac{P(x)}{Q(x)}$若可以分解为两个或多个多项式的乘积:$\dfrac{P(x)}{Q(x)}=\dfrac{P_1(x)}{Q_1(x)}+\dfrac{P_2(x)}{Q_2(x)}+\cdots$,则称为将真分式化为部分分式之和。其中$P_i$的最高阶应该低于$Q_i$最高阶次数。
|
||||
|
||||
通过这种化简方式,可以在求以商的形式的有利函数的式子的积分时拆分因式,从而简化积分运算。这种简化运算主要体现在分数的积分为对数。
|
||||
|
||||
即将多项式的积分式子转换为$\displaystyle{\int\dfrac{A}{x-a}\textrm{d}x}$和$\displaystyle{\int\dfrac{A}{(x-a)^n}\textrm{d}x}$等形式。
|
||||
|
||||
当然如果多项式是无法拆分为一次的多个式子,那就无法使用有理函数积分的化简方式。
|
||||
|
||||
$\dfrac{P}{(A_0x^a+A_1x^{a-1}+\cdots+A_ax^0)\cdots(N_0x^n+N_1x^{n-1}+\cdots+N_nx^0)}$ \medskip
|
||||
|
||||
$=\dfrac{a_0x^{a-1}+a_1x^{a-2}+\cdots+a_{a-1}x^0}{A_0x^a+A_1x^{a-1}+\cdots+A_ax^0}+\cdots+\dfrac{n_0x^{n-1}+n_1x^{n-2}+\cdots+n_{n-1}x^0}{N_0x^n+N_1x^{n-1}+\cdots+N_nx^0}$ \medskip
|
||||
|
||||
如$\dfrac{2x+3}{(x+1)(x+2)(x^2+3x+1)}=\dfrac{A}{x+1}+\dfrac{B}{x+2}+\dfrac{Cx+D}{x^2+3x+1}$ \medskip
|
||||
|
||||
从而$A(x+2)(x^2+3x+1)+B(x+1)(x^2+3x+1)+(Cx+D)(x+1)(x+2)$
|
||||
|
||||
$=A(x^3+5x^2+7x+2)+B(x^3+4x^2+4x+1)+(Cx^3+(3C+D)x^2+(2C+3D)x+2D)$
|
||||
|
||||
$=(A+B+C)x^3+(5A+4B+3C+D)x^2+(7A+4B+2C+3D)x+(2A+B+2D)$
|
||||
|
||||
从而$A+B+C=0$(\ding{172}),$5A+4B+3C+D=0$(\ding{173}),$7A+4B+2C+3D=2$(\ding{174}),$2A+B+2D=3$(\ding{175})。
|
||||
|
||||
\ding{173}-3×\ding{172}=$2A+B+D=0$(\ding{176})
|
||||
|
||||
\ding{175}-\ding{176}=$D=3$。
|
||||
|
||||
从而$5A+4B+3C=-3$(\ding{173}),$7A+4B+2C=-7$(\ding{174}),$2A+B=-3$(\ding{175})。
|
||||
|
||||
\ding{174}-\ding{173}=$2A-C=-4$(\ding{177})。
|
||||
|
||||
\ding{177}+\ding{172}=$3A+B=-4$(\ding{178})。
|
||||
|
||||
\ding{178}-\ding{175}=$A=-1$。
|
||||
|
||||
从而$B+C=1$(\ding{172}),$4B+3C=2$(\ding{173}),$4B+2C=0$(\ding{174}),$B=-1$(\ding{175})。
|
||||
|
||||
从而$C=2$。
|
||||
|
||||
所以$\dfrac{2x}{(x+1)(x+2)(x^2+3x+1)}=-\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{2x+3}{x^2+3x+1}$。\medskip
|
||||
|
||||
$\dfrac{P}{x^n}=\dfrac{A}{x}+\dfrac{B_0x+B_1}{x^2}+\cdots+\dfrac{N_0x^{n-1}+\cdots+N_{n-1}x^0}{x^n}$ \medskip
|
||||
|
||||
如$\dfrac{2x}{(1+x)(x^2+1)^2}=-\dfrac{1}{2}\dfrac{1}{x+1}+\dfrac{1}{2}\dfrac{x-1}{x^2+1}+\dfrac{x+1}{(x^2+1)^2}$。
|
||||
|
||||
\section{定积分}
|
||||
|
||||
不定积分的概念根据导数的代数定义给出,而定积分则由几何的面积运算引出。
|
||||
|
||||
Reference in New Issue
Block a user