1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-08 04:56:27 +08:00

积分部分的更新与微分字符的格式整理

将\rm{d}改为\textrm{d}从而让字体能被完全控制。
This commit is contained in:
Didnelpsun
2021-02-23 23:51:30 +08:00
parent 13753e45cb
commit 581a710918
6 changed files with 296 additions and 91 deletions

View File

@@ -643,7 +643,7 @@ $\therefore\lim\limits_{n\to\infty}x_n=\dfrac{1+\sqrt{5}}{2}$。
\subsection{变限积分极限}
已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\rm{d}\textit{x}$$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$
已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\,\textrm{d}x$$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$
\end{document}

View File

@@ -255,13 +255,13 @@ $\quad\quad\quad+x^2(x+1)^2(x+2)^2\cdots 2(x+n)$
已知一阶导数的时候,反函数的导数为原函数导数的倒数($g'(x)=\dfrac{1}{f'(x)}$)。
因为原函数的一阶导数是$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$,而反函数就是对原函数的$xy$对调,所以其反函数的一阶导数为$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}$
因为原函数的一阶导数是$\dfrac{\textrm{d}y}{\textrm{d}x}$,而反函数就是对原函数的$xy$对调,所以其反函数的一阶导数为$\dfrac{\textrm{d}x}{\textrm{d}y}$
\textbf{例题:}已知$y=x+e^x$,求其反函数的二阶导数。
$y=x+e^x$的反函数的一阶导数为$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}=\dfrac{1}{1+e^x}$
$y=x+e^x$的反函数的一阶导数为$\dfrac{\textrm{d}x}{\textrm{d}y}=\dfrac{1}{1+e^x}$
所以二阶导数为$\dfrac{\rm{d}^2\textit{x}}{\rm{d}\textit{y}^2}=\dfrac{\rm{d}\left(\dfrac{1}{1+\textit{e}^{\textit{x}}}\right)}{\rm{d}\textit{y}}=\dfrac{\dfrac{\rm{d}\left(\dfrac{1}{1+\textit{e}^{\textit{x}}}\right)}{\rm{d}\textit{x}}}{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}}=-\dfrac{e^x}{(1+e^x)^3}$
所以二阶导数为$\dfrac{\textrm{d}^2x}{\textrm{d}y^2}=\dfrac{\textrm{d}\left(\dfrac{1}{1+e^{x}}\right)}{\textrm{d}y}=\dfrac{\dfrac{\textrm{d}\left(\dfrac{1}{1+e^{x}}\right)}{\textrm{d}x}}{\dfrac{\textrm{d}y}{\textrm{d}x}}=-\dfrac{e^x}{(1+e^x)^3}$
\section{微分}
@@ -269,7 +269,7 @@ $y=x+e^x$的反函数的一阶导数为$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y
隐函数与参数方程求导基本上只用记住:\medskip
$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}$
$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{\dfrac{\textrm{d}y}{\textrm{d}t}}{\dfrac{\textrm{d}x}{\textrm{d}t}}$
\textbf{例题:}已知$y=y(x)$由参数方程$\left\{\begin{array}{lcl}
x=\dfrac{1}{2}\ln(1+t^2) \\
@@ -277,9 +277,9 @@ $\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\textit{y}}{\rm{
\end{array}
\right.$确定,求其一阶导数与二阶导数。
$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}=\dfrac{\dfrac{1}{2}\cdot\dfrac{2t}{1+t^2}}{\dfrac{1}{1+t^2}}=\dfrac{1}{t}$
$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{\dfrac{\textrm{d}y}{\textrm{d}t}}{\dfrac{\textrm{d}x}{\textrm{d}t}}=\dfrac{\dfrac{1}{2}\cdot\dfrac{2t}{1+t^2}}{\dfrac{1}{1+t^2}}=\dfrac{1}{t}$
$\dfrac{\rm{d}^2y}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}=\dfrac{-\dfrac{1}{t^2}}{\dfrac{t}{1+t^2}}=-\dfrac{1+t^2}{t^3}$
$\dfrac{\textrm{d}^2y}{\textrm{d}x^2}=\dfrac{\textrm{d}\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)}{\textrm{d}x}=\dfrac{\dfrac{\textrm{d}\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)}{\textrm{d}t}}{\dfrac{\textrm{d}x}{\textrm{d}t}}=\dfrac{-\dfrac{1}{t^2}}{\dfrac{t}{1+t^2}}=-\dfrac{1+t^2}{t^3}$
\section{导数应用}
@@ -291,7 +291,7 @@ $\dfrac{\rm{d}^2y}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y
\subsection{曲率}
曲率公式:$k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
曲率公式:$k=\left\lvert\dfrac{\textrm{d}\alpha}{\textrm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
\subsubsection{一般计算}

View File

@@ -345,7 +345,7 @@ $$
\begin{tikzpicture}[scale=0.9]
\draw[-latex](-3,0) -- (3,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,4) node[above]{$y$};
\draw[black, thick, domain=-3:3] plot (\x,{pi/2-rad(atan(\x))}) node[right]{$\rm{arccot}(\textit{x})$};
\draw[black, thick, domain=-3:3] plot (\x,{pi/2-rad(atan(\x))}) node[right]{$\textrm{arccot}(x)$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, densely dashed](-3,pi) -- (3,pi);
\filldraw[black] (-0.5,pi/2-0.5) node{$\dfrac{\pi}{2}$};
@@ -354,12 +354,12 @@ $$
反切函数有如下特征:
\begin{enumerate}
\item 特殊函数值:$\arctan 0=0$$\arctan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3}=$$\arctan 1=\dfrac{\pi}{4}$$\arctan\sqrt{3}=\dfrac{\pi}{3}$$\rm{arccot}\,0=\dfrac{\pi}{2}$$\rm{arccot}\,\sqrt{3}=\dfrac{\pi}{6}$$\rm{arccot}\,1=\dfrac{\pi}{4}$$\rm{arccot}\,\dfrac{\sqrt{3}}{3}=\dfrac{\pi}{3}$
\item 定义域:$(-\infty, +\infty)$,值域:$\arctan x:[-\dfrac{\pi}{2},+\dfrac{\pi}{2}]$$\rm{arccot}\,\textit{x}:[0,\pi]$
\item 单调性:$y=\arctan x$单调增,$y=\rm{arccot}\,\textit{x}$单调减。
\item 特殊函数值:$\arctan 0=0$$\arctan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3}=$$\arctan 1=\dfrac{\pi}{4}$$\arctan\sqrt{3}=\dfrac{\pi}{3}$$\textrm{arccot}\,0=\dfrac{\pi}{2}$$\textrm{arccot}\,\sqrt{3}=\dfrac{\pi}{6}$$\textrm{arccot}\,1=\dfrac{\pi}{4}$$\textrm{arccot}\,\dfrac{\sqrt{3}}{3}=\dfrac{\pi}{3}$
\item 定义域:$(-\infty, +\infty)$,值域:$\arctan x:\left[-\dfrac{\pi}{2},+\dfrac{\pi}{2}\right]$$\textrm{arccot}\,x:[0,\pi]$
\item 单调性:$y=\arctan x$单调增,$y=\textrm{arccot}\,x$单调减。
\item 奇偶性:$y=\arctan x$为奇函数。
\item 有界性:$\vert\arctan x\vert\leqslant\dfrac{\pi}{2}$$0\leqslant\rm{arccot}\,\textit{x}\leqslant\pi$
\item 性质:$\arctan x+\rm{arccot}\,\textit{x}=\dfrac{\pi}{2}(-\infty<x<+\infty)$
\item 有界性:$\vert\arctan x\vert\leqslant\dfrac{\pi}{2}$$0\leqslant\textrm{arccot}\,x\leqslant\pi$
\item 性质:$\arctan x+\textrm{arccot}\,x=\dfrac{\pi}{2}(-\infty<x<+\infty)$
\end{enumerate}
\subparagraph{初等函数} \leavevmode \medskip
@@ -409,7 +409,7 @@ $
\subparagraph{符号函数} \leavevmode \medskip
$
y=\rm{sgn}\,\textit{x}=\left\{
y=\textrm{sgn}\,x=\left\{
\begin{array}{lcl}
1, & & x>0 \\
0, & & x=0 \\
@@ -423,7 +423,7 @@ $
\draw[-latex](0,-1.5) -- (0,1.5) node[above]{$y$};
\draw[black, thick, domain=0:2] plot (\x,1);
\draw[black, thick, domain=-2:0] plot (\x,-1);
\filldraw[black] (-1.5,1) node{$\rm{sgn}\,\textit{x}$};
\filldraw[black] (-1.5,1) node{$\textrm{sgn}\,x$};
\filldraw[black] circle (2pt) (0,0) node[below]{$O$};
\filldraw[white, draw=black, line width=1pt] (0,1) circle (2pt);
\filldraw[black] (0,1) node[left]{$1$};
@@ -993,7 +993,7 @@ $a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\bet
以后的华里士公式(点火公式)会使用到,如下面的题目:
\textbf{例题5}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\rm{d}\textit{x}$$\int_0^{\frac{\pi}{2}}\cos^9x\rm{d}\textit{x}$\medskip
\textbf{例题5}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\textrm{d}x$$\int_0^{\frac{\pi}{2}}\cos^9x\textrm{d}x$\medskip
原式1为偶数次幂所以$=\dfrac{9}{10}\cdot\dfrac{7}{8}\cdot\dfrac{5}{6}\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=\dfrac{\pi}{2}\cdot\dfrac{9!!}{10!!}$\medskip
@@ -1010,7 +1010,7 @@ $a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\bet
\begin{enumerate}
\item $\vert a\pm b\vert\leqslant\vert a\vert+\vert b\vert$
\item 推广公式一到离散区间:$\vert a_1\pm a_2\pm a_3\pm\cdots\pm a_n\vert\leqslant\vert a_1\vert+\vert a_2\vert+\cdots+\vert a_n\vert$
\item 推广公式一到连续区间且$f(x)$$[a,b](a<b)$上可积:$\vert\int_a^bf(x)\rm{d}\textit{x}\vert\leqslant\int_a^b\vert f(x)\vert\rm{d}\textit{x}$。因为符号不一定相同的面积代数和一定小于同为正的面积代数和。
\item 推广公式一到连续区间且$f(x)$$[a,b](a<b)$上可积:$\vert\int_a^bf(x)\textrm{d}x\vert\leqslant\int_a^b\vert f(x)\vert\textrm{d}x$。因为符号不一定相同的面积代数和一定小于同为正的面积代数和。
\item $\vert\vert a\vert-\vert b\vert\vert\leqslant\vert a-b\vert$。后式子为两点之差,前式子可以看作$a$$b$两点与0之间的距离的差若异号则两者必然抵消一部分若同号则就等于后式。
\end{enumerate}

View File

@@ -195,7 +195,7 @@ $=u'(x)v(x)+v'(x)u(x)$
\textcolor{aqua}{\textbf{定理:}}$y=f(x)$可导,且$f'(x)\neq 0$
则存在反函数$x=\varphi(y)$,且$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}=\dfrac{1}{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}}$,即$\varphi'(x)=\dfrac{1}{f'(x)}$\medskip
则存在反函数$x=\varphi(y)$,且$\dfrac{\textrm{d}x}{\textrm{d}y}=\dfrac{1}{\dfrac{\textrm{d}y}{\textrm{d}x}}$,即$\varphi'(x)=\dfrac{1}{f'(x)}$\medskip
$y=f(x)$可导,且$f'(x)\neq 0$就是指严格单调,而严格单调必有反函数。
@@ -205,11 +205,11 @@ $y=f(x)$可导,且$f'(x)\neq 0$就是指严格单调,而严格单调必有
$y=\arcsin x$,即$x=\sin y$\medskip
$\therefore\dfrac{\rm{d}\arcsin\textit{x}}{\rm{d}\textit{x}}=\dfrac{1}{\dfrac{\rm{d}\sin\textit{y}}{\rm{d}\textit{y}}}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2y}}=\dfrac{1}{\sqrt{1-x^2}}$\medskip
$\therefore\dfrac{\textrm{d}\arcsin x}{\textrm{d}x}=\dfrac{1}{\dfrac{\textrm{d}\sin y}{\textrm{d}y}}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2y}}=\dfrac{1}{\sqrt{1-x^2}}$\medskip
$y=\arctan x$,就$x=\tan y$\medskip
$\therefore\dfrac{\rm{d}\arctan\textit{x}}{\rm{d}\textit{x}}=\dfrac{1}{\dfrac{\rm{d}\tan\textit{y}}{\rm{d}\textit{y}}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$\medskip
$\therefore\dfrac{\textrm{d}\arctan x}{\textrm{d}x}=\dfrac{1}{\dfrac{\textrm{d}\tan y}{\textrm{d}y}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$\medskip
二阶反函数导数\textcolor{aqua}{\textbf{定理:}}
@@ -217,21 +217,21 @@ $f''(x)$
$=y''_{xx}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}$\medskip
$=\dfrac{\textrm{d}\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)}{\textrm{d}x}$\medskip
$=\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}$\medskip
$=\dfrac{\textrm{d}^2y}{\textrm{d}x^2}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(\textit{y})}\right)}{\rm{d}\textit{x}}$\medskip
$=\dfrac{\textrm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\textrm{d}x}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(\textit{y})}\right)}{\rm{d}\textit{y}}\cdot\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$\medskip
$=\dfrac{\textrm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\textrm{d}y}\cdot\dfrac{\textrm{d}y}{\textrm{d}x}$\medskip
$=-\dfrac{x_{yy}''}{(x_y')^2}\cdot\dfrac{1}{x_y'}$\medskip
$=-\dfrac{x_{yy}''}{(x_y')^3}$\medskip
其中$\rm{d}\textit{x}\cdot\rm{d}\textit{x}=(\rm{d}\textit{x})^2=\rm{d}\textit{x}^2$称为微分的幂,而$\rm{d}(x^2)$叫幂的微分。
其中$\textrm{d}x\cdot\textrm{d}x=(\textrm{d}x)^2=\textrm{d}x^2$称为微分的幂,而$\textrm{d}(x^2)$叫幂的微分。
\textbf{例题:}$y=f(x)$的反函数是$x=\varphi(y)$,且$f(x)=\int_1^{2x}e^{t^2}\rm{d}\textit{t}+1$,求$\varphi''(1)$
\textbf{例题:}$y=f(x)$的反函数是$x=\varphi(y)$,且$f(x)=\int_1^{2x}e^{t^2}\textrm{d}t+1$,求$\varphi''(1)$
$\because y=f(x)$$\therefore x=\varphi(y)$$x_{yy}''=\varphi''(y)=-\dfrac{y_{xx}''}{(y_x')^3}=-\dfrac{f''(x)}{[f'(x)]^3}$\medskip
@@ -306,7 +306,7 @@ $\therefore y'=\dfrac{1}{3}\left(\dfrac{1}{x+1}+\dfrac{4}{2x-1}-\dfrac{5}{4-3x}\
对于$u(x)^{v(x)}(u(x)>0,u(x)\neq 1)$,除了对数求导法外还可以使用指数函数$u(x)^{v(x)}=e^{v(x)\ln u(x)}$
然后求导得到$[u(x)^{v(x)}]'$$=[e^{v(x)\ln u(x)}]'$
然后求导得到$[u(x)^{v(x)}]'=[e^{v(x)\ln u(x)}]'$
$=u(x)^{v(x)}\left[v'(x)\ln u(x)+v(x)\cdot\dfrac{u'(x)}{u(x)}\right]$
@@ -494,9 +494,9 @@ $
\medskip
一阶导数:$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\rm{d}\textit{y}/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{\psi'(t)}{\varphi'(t)}=u(t)$
一阶导数:$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{\textrm{d}y/\textrm{d}t}{\textrm{d}x/\textrm{d}t}=\dfrac{\psi'(t)}{\varphi'(t)}=u(t)$
二阶导数:$\dfrac{\rm{d}^2y}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{\rm{d}u/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{u'_t}{x'_t}$
二阶导数:$\dfrac{\textrm{d}^2y}{\textrm{d}x^2}=\dfrac{\textrm{d}\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)}{\textrm{d}x}=\dfrac{\textrm{d}\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)/\textrm{d}t}{\textrm{d}x/\textrm{d}t}=\dfrac{\textrm{d}u/\textrm{d}t}{\textrm{d}x/\textrm{d}t}=\dfrac{u'_t}{x'_t}$
\textbf{例题:}$y=y(x)$由方程$\left\{
\begin{array}{l}
@@ -504,13 +504,13 @@ $
y=t\sin t+\cos t
\end{array}
\right.
$$t$为参数)确定,求$\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}\vert_{t=\frac{\pi}{4}}$
$$t$为参数)确定,求$\dfrac{\textrm{d}^2y}{\textrm{d}x^2}\vert_{t=\frac{\pi}{4}}$
求参数方程的二阶导数首先就要求出其一阶导数:\medskip
$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{y_t'}{x_t'}=\dfrac{t\cos t}{\cos t}=t$\medskip
$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{y_t'}{x_t'}=\dfrac{t\cos t}{\cos t}=t$\medskip
$\therefore\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{t_t'}{(\sin t)_t'}=\dfrac{1}{\cos t}$\medskip
$\therefore\dfrac{\textrm{d}^2y}{\textrm{d}x^2}=\dfrac{\textrm{d}\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)}{\textrm{d}x}=\dfrac{t_t'}{(\sin t)_t'}=\dfrac{1}{\cos t}$\medskip
$\therefore \sqrt{2}$
@@ -528,9 +528,9 @@ $\therefore \sqrt{2}$。
$\Delta x\to 0$时,将这个变化定义为$2x\cdot\Delta x+o(\Delta x)$,前项为线性主部,后面为误差。这个就是$S$的微分。
增量$\Delta y=f(x_0+\Delta)-f(x_0)=A\Delta x+o(\Delta x)$,这个$A\Delta x$定义为$\rm{d}\textit{y}$,叫做$y$的微分。
增量$\Delta y=f(x_0+\Delta)-f(x_0)=A\Delta x+o(\Delta x)$,这个$A\Delta x$定义为$\textrm{d}y$,叫做$y$的微分。
$\therefore \rm{d}\textit{y}\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{d}\textit{x}$
$\therefore \textrm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\textrm{d}x$
由此,可导必可微,可微必可导。
@@ -543,7 +543,7 @@ $\therefore \rm{d}\textit{y}\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)
\draw[black, densely dashed](1.5,1.125) -- (0,1.125) node[left]{$y_0$};
\draw[black, densely dashed](3,3) -- (3,0) node[below]{$x_0+\Delta x$};
\draw[black, densely dashed](3,3) -- (0,3) node[left]{$y_0+\Delta x$};
\draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\rm{d}\textit{y}\cdot\textit{x}+\textit{b}$};
\draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\textrm{d}y\cdot x+b$};
\draw[<->, black](1.5,1.125) -- (3,1.125);
\draw[<->, black](4,1.125) -- (4,3);
\draw[<->, black](3.25,1.125) -- (3.25,1.875);
@@ -553,7 +553,7 @@ $\therefore \rm{d}\textit{y}\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)
\draw[black](3,1.875) -- (3.75,1.875);
\filldraw[black] (2.25,0.75) node{$\Delta x$};
\filldraw[black] (4.3,2) node{$\Delta y$};
\filldraw[black] (3.5,1.5) node{\scriptsize{$\rm{d}\textit{y}$}};
\filldraw[black] (3.5,1.5) node{\scriptsize{$\textrm{d}y$}};
\filldraw[black] (3.5,2.5) node{\scriptsize{$o(\Delta x)$}};
\end{tikzpicture}
@@ -566,28 +566,28 @@ $\therefore \rm{d}\textit{y}\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)
若函数可导:
\begin{enumerate}
\item 和差的微分:$\rm{d}[\textit{u}(\textit{x})\pm\textit{v}(\textit{x})]=\rm{d}\textit{u}(\textit{x})\pm\rm{d}\textit{v}(\textit{x})$
\item 积的微分:$\rm{d}[\textit{u}(\textit{x})\textit{v}(\textit{x})]$$=\textit{u}(\textit{x})\rm{d}\textit{v}(\textit{x})+\textit{v}(\textit{x})\rm{d}\textit{u}(\textit{x})$
\item 商的微分:$\rm{d}\left[\dfrac{\textit{u}(\textit{x})}{\textit{v}(\textit{x})}\right]=\dfrac{\textit{v}(\textit{x})\rm{d}\textit{u}(\textit{x})-\textit{u}(\textit{x})\rm{d}\textit{v}(\textit{x})}{[\textit{v}(\textit{x})]^2}$$\textit{v}(\textit{x})\neq 0$
\item 复合函数的微分:链式求导法则$\dfrac{\rm{d}\textit{u}}{\rm{d}\textit{x}}=\dfrac{\rm{d}\textit{u}}{\rm{d}\textit{y}}\cdot\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$
\item 和差的微分:$\textrm{d}[u(x)\pm v(x)]=\textrm{d}u(x)\pm\textrm{d}v(x)$
\item 积的微分:$\textrm{d}[u(x)v(x)]=u(x)\textrm{d}v(x)+v(x)\textrm{d}u(x)$
\item 商的微分:$\textrm{d}\left[\dfrac{u(x)}{v(x)}\right]=\dfrac{v(x)\textrm{d}u(x)-u(x)\textrm{d}v(x)}{[v(x)]^2}$$v(x)\neq 0$
\item 复合函数的微分:链式求导法则$\dfrac{\textrm{d}u}{\textrm{d}x}=\dfrac{\textrm{d}u}{\textrm{d}y}\cdot\dfrac{\textrm{d}y}{\textrm{d}x}$
\end{enumerate}
\subsubsection{微分形式不变性}
$y=f(u)$可微,$u=g(x)$可微,则$y=f(g(x))$可微,且$\rm{d}\textit{y}=\textit{y}'_{\textit{x}}\rm{d}\textit{x}=\textit{y}'_{\textit{u}}\rm{d}\textit{u}$。即对哪个变量求导都是一样的,即$\rm{d}\{\textit{f}\,[\textit{g}(\textit{x})]\}=\textit{f}\,'[\textit{g}(\textit{x})]\textit{g}'(\textit{x})\rm{d}\textit{x}$
$y=f(u)$可微,$u=g(x)$可微,则$y=f(g(x))$可微,且$\textrm{d}y=y'_{x}\textrm{d}x=y'_{u}\textrm{d}u$。即对哪个变量求导都是一样的,即$\textrm{d}\{f\,[g(x)]\}=f\,'[g(x)]g'(x)\textrm{d}x$
一阶微分形式不变性指:$\rm{d}\textit{f}\,(\varsigma)=\textit{f}\,'(\varsigma)\rm{d}\varsigma$,无论$\varsigma$是什么(类似导数的链式求导法则)。
一阶微分形式不变性指:$\textrm{d}f\,(\varsigma)=f\,'(\varsigma)\textrm{d}\varsigma$,无论$\varsigma$是什么(类似导数的链式求导法则)。
\textbf{例题:}$y=e^{\sin(\ln x)}$,求$\rm{d}\textit{y}$
\textbf{例题:}$y=e^{\sin(\ln x)}$,求$\textrm{d}y$
$\because y=e^{\sin(\ln x)} \therefore$
$
\begin{aligned}
\rm{d}\textit{y} &=\rm{d}e^{\sin(\ln\textit{x})} \\
& =e^{\sin(\ln x)}\cdot\rm{d}(\sin(\ln\textit{x})) \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\rm{d}\ln\textit{x} \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\dfrac{1}{x}\rm{d}\textit{x}
\textrm{d}y &=\textrm{d}e^{\sin(\ln x)} \\
& =e^{\sin(\ln x)}\cdot\textrm{d}(\sin(\ln x)) \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\textrm{d}\ln x \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\dfrac{1}{x}\textrm{d}x
\end{aligned}
$
@@ -617,8 +617,8 @@ $
$\tan x$ & $\dfrac{1}{\cos^2x}=\sec^2x$ & $\cot x$ & $\dfrac{1}{\sin^2x}=\csc^2x$ \\ \hline
$\sec x$ & $\sec x\tan x$ & $\csc x$ & $-\csc x\cot x$ \\ \hline
$\arcsin x$ & $\dfrac{1}{1-x^2}$ & $\arccos x$ & $-\dfrac{1}{1-x^2}$ \\ \hline
$\arctan x$ & $\dfrac{1}{1+x^2}$ & $\rm{arccot}\,\textit{x}$ & $-\dfrac{1}{1+x^2}$ \\ \hline
$\rm{arcsec}\,\textit{x}$ & $\dfrac{1}{x\sqrt{x^2-1}}$ & $\rm{arccsc}\,\textit{x}$ & $-\dfrac{1}{x\sqrt{x^2-1}}$ \\ \hline
$\arctan x$ & $\dfrac{1}{1+x^2}$ & $\textrm{arccot}\,x$ & $-\dfrac{1}{1+x^2}$ \\ \hline
$\textrm{arcsec}\,x$ & $\dfrac{1}{x\sqrt{x^2-1}}$ & $\textrm{arccsc}\,x$ & $-\dfrac{1}{x\sqrt{x^2-1}}$ \\ \hline
\hline
\end{tabular}
\end{center}
@@ -626,24 +626,24 @@ $
\subsection{双曲与反双曲函数}
\begin{itemize}
\item 双曲正弦:$\rm{sinh}\,\textit{x}=\rm{sh}\,\textit{x}=\dfrac{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}{2}$
\item 双曲余弦:$\rm{cosh}\,\textit{x}=\rm{ch}\,\textit{x}=\dfrac{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}{2}$
\item 双曲正切:$\rm{tanh}\,\textit{x}=\rm{th}\,\textit{x}=\dfrac{\rm{sinh}\,\textit{x}}{\rm{cosh}\,\textit{x}}=\dfrac{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}$
\item 双曲余切:$\rm{coth}\,\textit{x}=\dfrac{\rm{cosh}\,\textit{x}}{\rm{sinh}\,\textit{x}}=\dfrac{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}$
\item 双曲正割:$\rm{sech}\,\textit{x}=\dfrac{1}{\rm{cosh}\,\textit{x}}=\dfrac{2}{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}$
\item 双曲余割:$\rm{csch}\,\textit{x}=\dfrac{1}{\rm{sinh}\,\textit{x}}=\dfrac{2}{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}$
\item 反双曲正弦:$\rm{arcsinh}\,\textit{x}=\ln\left(\textit{x}+\sqrt{\textit{x}^2+1}\right)$
\item 反双曲余弦:$\rm{arccosh}\,\textit{x}=\ln\left(\textit{x}+\sqrt{\textit{x}^2-1}\right)$
\item 反双曲正切:$\rm{arctanh}\,\textit{x}=\dfrac{1}{2}\ln\left(\dfrac{1+\textit{x}}{1-\textit{x}}\right)$
\item 双曲正弦:$\textrm{sinh}\,x=\textrm{sh}\,x=\dfrac{e^{x}-e^{-x}}{2}$
\item 双曲余弦:$\textrm{cosh}\,x=\textrm{ch}\,x=\dfrac{e^{x}+e^{-x}}{2}$
\item 双曲正切:$\textrm{tanh}\,x=\textrm{th}\,x=\dfrac{\textrm{sinh}\,x}{\textrm{cosh}\,x}=\dfrac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
\item 双曲余切:$\textrm{coth}\,x=\dfrac{\textrm{cosh}\,x}{\textrm{sinh}\,x}=\dfrac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$
\item 双曲正割:$\textrm{sech}\,x=\dfrac{1}{\textrm{cosh}\,x}=\dfrac{2}{e^{x}+e^{-x}}$
\item 双曲余割:$\textrm{csch}\,x=\dfrac{1}{\textrm{sinh}\,x}=\dfrac{2}{e^{x}-e^{-x}}$
\item 反双曲正弦:$\textrm{arcsinh}\,x=\ln\left(x+\sqrt{x^2+1}\right)$
\item 反双曲余弦:$\textrm{arccosh}\,x=\ln\left(x+\sqrt{x^2-1}\right)$
\item 反双曲正切:$\textrm{arctanh}\,x=\dfrac{1}{2}\ln\left(\dfrac{1+x}{1-x}\right)$
\end{itemize}
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
原函数 & 导函数 & 原函数 & 导函数\\ \hline
$\rm{sinh}\,\textit{x}$ & $\rm{cosh}\,\textit{x}$ & $\rm{cosh}\,\textit{x}$ & $\rm{sinh}\,\textit{x}$ \\ \hline
$\rm{tanh}\,\textit{x}$ & $\dfrac{1}{\rm{cosh}\,\textit{x}^2}$ & $\rm{arcsinh}\,\textit{x}$ & $\dfrac{1}{\sqrt{x^2+1}}$ \\ \hline
$\rm{arccosh}\,\textit{x}$ & $\dfrac{1}{\sqrt{x^2-1}}$ & $\rm{arctan}\,\textit{x}$ & $\dfrac{1}{1-x^2}$ \\
$\textrm{sinh}\,x$ & $\textrm{cosh}\,x$ & $\textrm{cosh}\,x$ & $\textrm{sinh}\,x$ \\ \hline
$\textrm{tanh}\,x$ & $\dfrac{1}{\textrm{cosh}\,x^2}$ & $\textrm{arcsinh}\,x$ & $\dfrac{1}{\sqrt{x^2+1}}$ \\ \hline
$\textrm{arccosh}\,x$ & $\dfrac{1}{\sqrt{x^2-1}}$ & $\textrm{arctan}\,x$ & $\dfrac{1}{1-x^2}$ \\
\hline
\end{tabular}
\end{center}

View File

@@ -496,28 +496,28 @@ $\forall x\in U(x_0,\delta)$恒有$f(x)\leqslant f(x_0)$,则$f(x)$在$x_0$取
\draw[black, thick,domain=0.4:1.1] plot (\x, \x);
\filldraw[black] (0.5,1) node {$y=f(x)$};
\draw[densely dashed](0.5,0.5) -- (0.5, 0) node[below]{$x$};
\draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\rm{d}\textit{x}$};
\draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\textrm{d}x$};
\draw[densely dashed](0.5,0.5) -- (1,0.5);
\filldraw[black](0.5,0.6) node{$y$};
\filldraw[black](0.95,1.1) node{$y_0$};
\filldraw[black](0.75,0.35) node{$\rm{d}\textit{x}$};
\filldraw[black](1.1,0.6) node{$\rm{d}\textit{y}$};
\filldraw[black](0.75,0.35) node{$\textrm{d}x$};
\filldraw[black](1.1,0.6) node{$\textrm{d}y$};
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.4\linewidth}
$\rm{d}\textit{y}=\textit{f}\,(\textit{x}+\rm{d}\textit{x})-\textit{f}\,(\textit{x})$
$\textrm{d}y=f\,(x+\textrm{d}x)-f\,(x)$
$(\rm{d}\textit{s})^2=(\rm{d}\textit{x})^2+(\rm{d}\textit{y})^2$
$(\textrm{d}s)^2=(\textrm{d}x)^2+(\textrm{d}y)^2$
$\rm{d}\textit{s}=\sqrt{(\rm{d}\textit{x})^2+(\rm{d}\textit{y})^2}$(弧微分)
$\textrm{d}s=\sqrt{(\textrm{d}x)^2+(\textrm{d}y)^2}$(弧微分)
\end{minipage}
对于弧微分:
\begin{itemize}
\item 若直角坐标系下$y=f(x)$$\rm{d}\textit{s}=\sqrt{1+\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)^2}\rm{d}\textit{x}$$=\sqrt{1+f'^2(x)}\rm{d}\textit{x}$,即$\rm{d}\textit{s}=$$\sqrt{1+f'^2(x)}\rm{d}\textit{x}$
\item 若参数方程下:$x=\phi(t),y=\psi(t)$$\rm{d}\textit{s}=\sqrt{\left(\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}\right)^2+\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}\right)^2}\rm{d}\textit{t}$\medskip\\$=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}\textit{t}$,即$\rm{d}\textit{s}=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}\textit{t}$
\item 若直角坐标系下$y=f(x)$$\textrm{d}s=\sqrt{1+\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)^2}\textrm{d}x=\sqrt{1+f'^2(x)}\textrm{d}x$,即$\textrm{d}s=\sqrt{1+f'^2(x)}\textrm{d}x$
\item 若参数方程下:$x=\phi(t),y=\psi(t)$$\textrm{d}s=\sqrt{\left(\dfrac{\textrm{d}x}{\textrm{d}t}\right)^2+\left(\dfrac{\textrm{d}y}{\textrm{d}t}\right)^2}\textrm{d}t$\medskip\\$=\sqrt{\psi'^2(t)+\phi'^2(t)}\textrm{d}t$,即$\textrm{d}s=\sqrt{\psi'^2(t)+\phi'^2(t)}\textrm{d}t$
\end{itemize}
\subsection{曲率}
@@ -575,20 +575,20 @@ $\forall x\in U(x_0,\delta)$恒有$f(x)\leqslant f(x_0)$,则$f(x)$在$x_0$取
\begin{minipage}{0.6\linewidth}
$y-y_0$平均曲率:$\hat{k}=\dfrac{\vert\Delta\alpha\vert}{\vert\Delta s\vert}$\medskip
$y$曲率:$k=\lim\limits_{\Delta x\to 0}\left\lvert\dfrac{\Delta\alpha}{\Delta s}\right\rvert=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert$$\alpha$$y$处切线与$x$轴所成角)。
$y$曲率:$k=\lim\limits_{\Delta x\to 0}\left\lvert\dfrac{\Delta\alpha}{\Delta s}\right\rvert=\left\lvert\dfrac{\textrm{d}\alpha}{\textrm{d}s}\right\rvert$$\alpha$$y$处切线与$x$轴所成角)。
\end{minipage}\medskip
需要对曲率公式进行化简,得到$s$$\alpha$关于$x$的表示。根据弧微分的定义:$\rm{d}\textit{s}=$$\sqrt{1+f'^2(x)}\rm{d}\textit{x}$
需要对曲率公式进行化简,得到$s$$\alpha$关于$x$的表示。根据弧微分的定义:$\textrm{d}s=\sqrt{1+f'^2(x)}\textrm{d}x$
而对于$\alpha$$\tan\alpha=y'=f'(x)$
两边对$x$求导:$\sec^2\alpha\cdot\dfrac{\rm{d}\alpha}{\rm{d}\textit{x}}=y''=f''(x)$
两边对$x$求导:$\sec^2\alpha\cdot\dfrac{\textrm{d}\alpha}{\textrm{d}x}=y''=f''(x)$
$\because\sec^2\alpha=1+\tan^2\alpha=1+y'^2$
$\therefore\dfrac{\rm{d}\alpha}{\rm{d}\textit{x}}=\dfrac{y''}{1+y'^2}\Rightarrow\rm{d}\alpha=\dfrac{\textit{y}''}{1+\textit{y}\,'^2}\rm{d}\textit{x}$
$\therefore\dfrac{\textrm{d}\alpha}{\textrm{d}x}=\dfrac{y''}{1+y'^2}\Rightarrow\textrm{d}\alpha=\dfrac{y''}{1+y\,'^2}\textrm{d}x$
$\therefore k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
$\therefore k=\left\lvert\dfrac{\textrm{d}\alpha}{\textrm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
\subsection{曲率半径}

View File

@@ -39,11 +39,26 @@
\setcounter{page}{1}
\section{不定积分}
积分就是导数的逆运算。$\int f(x)\,\rm{d}$$x=F(x)+C$$F'(x)=f(x)$
\subsection{定义}
所以积分运算就可以将原来求导的方式进行逆运算。其中隐函数求导法与参数方程求导法都可以看作复合函数求导法则的变式
$f(x)$定义在区间$I$上,若存在可导函数$F(x)$,使得$F'(x)=f(x)$对于任意$x\in I$都成立,则称$F(x)$$f(x)$在区间$I$上的一个原函数。对于全体的原函数集合,就称为不定积分
函数和差的求导法则的逆运算,就是分项积分法
连续函数必有原函数。
在区间$I$上,函数$f(x)$带有任意常数项的原函数称为$f(x)/f(x)\,\textrm{d}x$在该区间上的不定积分,记为$\int f(x)\,\textrm{d}x$,其中$\int$为积分号,$f(x)$为被积函数,$f(x)\,\textrm{d}x$为被积表达式,$x$为积分变量。
积分就是导数的逆运算。$\int f(x)\,\textrm{d}x=F(x)+C$$F'(x)=f(x)$
\subsection{性质与积分运算}
积分运算就可以将原来求导的方式进行逆运算。其中隐函数求导法与参数方程求导法都可以看作复合函数求导法则的变式。
积分运算具有两个性质:
\begin{enumerate}
\item $\int[f(x)+g(x)]\textrm{d}x=\int f(x)\textrm{d}x+\int g(x)\textrm{d}x$,就是分项积分法。
\item $\int kf(x)\textrm{d}x=k\int f(x)\textrm{d}x$
\end{enumerate}
复合函数的求导法则的逆运算,就是换元积分法。
@@ -53,39 +68,41 @@
\subsubsection{第一类换元法(凑微分法)}
\textcolor{aqua}{\textbf{定理:}}$\int f(u)\,\rm{d}$$u=F(u)+C$,则$\int f[\varphi(x)]\varphi'(x)\,\rm{d}$$x=\int f[\varphi(x)]\,\rm{d}$$\varphi(x)=F[\varphi(x)]+C$
\textcolor{aqua}{\textbf{定理:}}$\int f(u)\,\textrm{d}u=F(u)+C$,则$\int f[\varphi(x)]\varphi'(x)\,\textrm{d}x=\int f[\varphi(x)]\,\textrm{d}\varphi(x)=F[\varphi(x)]+C$
$\int\dfrac{\rm{d}\textit{x}}{a^2+x^2}=\dfrac{1}{a}\int\dfrac{\rm{d}\dfrac{\textit{x}}{\textit{a}}}{1+\left(\dfrac{x}{a}\right)^2}=\dfrac{1}{a}\arctan\dfrac{x}{a}+C$$\int\dfrac{\rm{d}\textit{x}}{\sqrt{a^2-x^2}}=\int\dfrac{\rm{d}\dfrac{\textit{x}}{\textit{a}}}{\sqrt{1-\left(\dfrac{x}{a}\right)^2}}=\arcsin\dfrac{x}{a}+C$
$\displaystyle{\int\dfrac{\textrm{d}x}{a^2+x^2}}=\displaystyle{\dfrac{1}{a}\int\dfrac{\textrm{d}\dfrac{x}{a}}{1+\left(\dfrac{x}{a}\right)^2}}=\dfrac{1}{a}\arctan\dfrac{x}{a}+C$\medskip
$\int\dfrac{x}{\sqrt{1+x^2}}\rm{d}\textit{x}=\dfrac{1}{2}\int\dfrac{\rm{d}(1+\textit{x}^2)}{\sqrt{1+x^2}}=\sqrt{1+x^2}+C$\medskip
$\displaystyle{\int\dfrac{\textrm{d}x}{\sqrt{a^2-x^2}}}=\displaystyle{\int\dfrac{\textrm{d}\dfrac{x}{a}}{\sqrt{1-\left(\dfrac{x}{a}\right)^2}}}=\arcsin\dfrac{x}{a}+C$\medskip
$\displaystyle{\int\dfrac{x}{\sqrt{1+x^2}}\textrm{d}x=\dfrac{1}{2}\int\dfrac{\textrm{d}(1+x^2)}{\sqrt{1+x^2}}}=\sqrt{1+x^2}+C$\medskip
凑微分法适用于式子比较简单的情况,所凑微分的形式必须符合一个简单积分公式的式子,且有一定的式子可以提出来到微分号后面。
\textbf{例题:}
$\int(1+3x)^{100}\,\rm{d}$$x=\dfrac{1}{3}\int(1+3x)^{100}\,\rm{d}$$(1+3x)=\dfrac{1}{303}(1+3x)^{101}+C$
$\int(1+3x)^{100}\,\textrm{d}x=\dfrac{1}{3}\int(1+3x)^{100}\,\textrm{d}(1+3x)=\dfrac{1}{303}(1+3x)^{101}+C$
$\int\cos^2x\,\rm{d}$$x=\dfrac{1}{2}\int(1+\cos 2\textit{x})\,\rm{d}$$x=\dfrac{1}{2}\left(x+\dfrac{1}{2}\sin 2x\right)+C$
$\int\cos^2x\,\textrm{d}x=\dfrac{1}{2}\int(1+\cos 2x)\,\textrm{d}x=\dfrac{1}{2}\left(x+\dfrac{1}{2}\sin 2x\right)+C$
$\int\cos^3x\,\rm{d}$$x=\int\cos^2\,\rm{d}$$\sin x=\int(1-\sin^2x)\,\rm{d}$$\sin x=\sin x-\dfrac{1}{3}\sin^3x+C$
$\int\cos^3x\,\textrm{d}x=\int\cos^2\,\textrm{d}\sin x=\int(1-\sin^2x)\,\textrm{d}\sin x=\sin x-\dfrac{1}{3}\sin^3x+C$
$\int\dfrac{\rm{d}\textit{x}}{x\sqrt{1+\ln x}}=\int\dfrac{\rm{d}(1+\ln\textit{x})}{\sqrt{1+\ln x}}=2\sqrt{1+\ln x}+C$
$\displaystyle{\int\dfrac{\textrm{d}x}{x\sqrt{1+\ln x}}=\int\dfrac{\textrm{d}(1+\ln x)}{\sqrt{1+\ln x}}}=2\sqrt{1+\ln x}+C$
$\int\dfrac{\rm{d}\textit{x}}{\sqrt{x}(1+x)}=2\int\dfrac{\rm{d}\sqrt{\textit{x}}}{1+(\sqrt{x})^2}=2\arctan\sqrt{x}+C$
$\displaystyle{\int\dfrac{\textrm{d}x}{\sqrt{x}(1+x)}=2\int\dfrac{\textrm{d}\sqrt{x}}{1+(\sqrt{x})^2}}=2\arctan\sqrt{x}+C$
$\int\dfrac{\arcsin\sqrt{x}}{\sqrt{x(1-x)}}\,\rm{d}$$x=\int\dfrac{\arcsin\sqrt{x}}{1-x}\cdot\dfrac{\rm{d}\textit{x}}{\sqrt{x}}$$=2\int\dfrac{\arcsin\sqrt{x}}{1-(\sqrt{x})^2}\,\rm{d}$$\sqrt{x}$
$\displaystyle{\int\dfrac{\arcsin\sqrt{x}}{\sqrt{x(1-x)}}\,\textrm{d}x=\int\dfrac{\arcsin\sqrt{x}}{1-x}\cdot\dfrac{\textrm{d}x}{\sqrt{x}}=2\int\dfrac{\arcsin\sqrt{x}}{1-(\sqrt{x})^2}\,\textrm{d}\sqrt{x}}$
$=2\int\arcsin\sqrt{x}\,\rm{d}$$\arcsin\sqrt{x}=(\arcsin\sqrt{x})^2+C$
$=2\int\arcsin\sqrt{x}\,\textrm{d}\arcsin\sqrt{x}=(\arcsin\sqrt{x})^2+C$
\subsubsection{第二类换元法}
\textcolor{aqua}{\textbf{定理:}}$x=\varphi(t)$为单调可导函数,且$\varphi'(t)\neq 0$$\int f[\varphi(t)\varphi'(t)]\,\rm{d}$$t=F(t)+C$,则$\int f(x)\rm{d}$$x=\int f[\varphi(t)\varphi'(t)]\,\rm{d}$$t=F(t)+C=F[\varphi^{-1}(x)]+C$
\textcolor{aqua}{\textbf{定理:}}$x=\varphi(t)$为单调可导函数,且$\varphi'(t)\neq 0$$\int f[\varphi(t)\varphi'(t)]\,\textrm{d}t=F(t)+C$,则$\int f(x)\textrm{d}x=\int f[\varphi(t)\varphi'(t)]\,\textrm{d}t=F(t)+C=F[\varphi^{-1}(x)]+C$
第二类换元法适用于无法适用第一类换元法的情况,但是最重要的还是对于中间变量的取值,这个中间变量必须要让原式子更简单,且还要注意到变量取值范围。
\textcolor{orange}{注意:}$\varphi'(t)\neq 0$是为了保证中间变量函数具有反函数,而单调函数必然有反函数,所以只要能证明这个中间变量函数必然单调,那么其实$\varphi'(t)$也可以等于0。
\textbf{例题:}$\int\sqrt{a^2-x^2}\,\rm{d}$$x(a>0)$
\textbf{例题:}$\int\sqrt{a^2-x^2}\,\textrm{d}x(a>0)$
首先看题目,如果使用凑微分法,那必须从式子中提取出一个式子放到微分后面,且提取后的式子满足一个简单的积分公式。
@@ -107,10 +124,198 @@ $=2\int\arcsin\sqrt{x}\,\rm{d}$$\arcsin\sqrt{x}=(\arcsin\sqrt{x})^2+C$。
但是在$\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]$$\varphi'(t)=a\sin t$是严格单调递增的,单调函数必然存在反函数,所以$\varphi'(t)$可以等于0从而$t\in\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]$
$\int\sqrt{a^2-x^2}\,\rm{d}$$x=a\int\cos t\,\rm{d}$$a\sin t=a^2\int\cos^2t\rm{d}$$t=\dfrac{a^2}{2}\int(1+\cos 2t)\rm{d}$$t=\dfrac{a^2}{2}\left(t+\dfrac{1}{2}\sin 2t\right)+C=\dfrac{a^2}{2}\left(\arcsin\dfrac{x}{a}+\dfrac{x}{a}\sqrt{1-\dfrac{x^2}{a^2}}\right)+C$
$\int\sqrt{a^2-x^2}\,\textrm{d}x=a\int\cos t\,\textrm{d}a\sin t=a^2\int\cos^2t\textrm{d}t=\dfrac{a^2}{2}\int(1+\cos 2t)\textrm{d}t=\dfrac{a^2}{2}\left(t+\dfrac{1}{2}\sin 2t\right)+C=\dfrac{a^2}{2}\left(\arcsin\dfrac{x}{a}+\dfrac{x}{a}\sqrt{1-\dfrac{x^2}{a^2}}\right)+C$
\textbf{例题:}
已知$\tan^2x+1=\sec^2x$
$\displaystyle{\int\dfrac{\textrm{d}x}{\sqrt{a^2+x^2}}}(a>0)$
$x=a\tan t$
原式$=\displaystyle{\int\dfrac{a\sec^2t}{a\sec t}\,\textrm{d}t=\int\sec t\,\textrm{d}t}=\ln\vert\sec t+\tan t\vert+C=\ln\bigg\vert\sqrt{1+\dfrac{x^2}{a^2}}+\dfrac{x}{a}\bigg\vert+C$
$\displaystyle{\int\dfrac{\textrm{d}x}{\sqrt{x^2-a^2}}}(a>0)$
$x=a\sec t$
原式$=\displaystyle{\int\dfrac{a\sec t\tan t}{a\tan t}\,\textrm{d}t}=\ln\bigg\vert\sec t+\tan t\bigg\vert+C=\ln\bigg\vert\dfrac{x}{a}+\sqrt{\dfrac{x^2}{a^2}-1}\vert+C$\medskip
所以常用的换元积分替换方式:
\begin{enumerate}
\item $\sqrt{a^2-x^2}$$x=a\sin t(a\cos t)$
\item $\sqrt{a^2+x^2}$$x=a\tan t$
\item $\sqrt{x^2-a^2}$$x=a\sec t$
\end{enumerate}
换元法本质是将式子转换为我们已知的积分公式,所以换元积分法只适合于能转换为积分公式的简单式子上,如果式子比较复杂或形式与大部分积分公式不一致,那么也无法换元了。
\subsection{分部积分法}
已知$(uv)'=uv'+u'v$,所以$uv'=(uv)'-u'v$,从而$\int uv'\,\textrm{d}x=\int(uv)'\,\textrm{d}x-\int vu'\,\textrm{d}x$,即$\int u\,\textrm{d}v=uv-\int v\,\textrm{d}u$
所以分部积分法的公式就是:$\int u\,\textrm{d}v=uv-\int v\,\textrm{d}u$
所以分部积分法的适用方式就是所求积分的式子是一个可拆分为两项不同函数的式子,式子的分式中一个式子不好积分,另一个式子好积分,就可以用好积分的式子来积分计算。
\subsubsection{基本分部积分}
\textbf{例题:}
$\int xe^x\,\textrm{d}x=\int x\,\textrm{d}e^x=xe^x-\int e^x\textrm{d}x=xe^x-e^x+C$
$\int x\sin x\,\textrm{d}x=-\int x\,\textrm{d}\cos x=-[x\cos x-\int\cos x\,\textrm{d}x]=-[x\cos x-\sin x]+C=\sin x-x\cos x+C$
$\int x\ln x\,\textrm{d}x=\dfrac{1}{2}\int\ln x\textrm{d}x^2=\dfrac{1}{2}[x^2\ln x-\ln x^2\textrm{d}\ln x]=\dfrac{1}{2}[x^2\ln x-\ln x\textrm{d}x]=\dfrac{1}{2}x^2\ln x-\dfrac{1}{4}x^2+C$
$\int x\arctan x\textrm{d}x=\dfrac{1}{2}\int\arctan x\textrm{d}x^2=\dfrac{1}{2}\left[x^2\arctan x-\displaystyle{\int\dfrac{x^2}{1+x^2}\textrm{d}x}\right]=\\ \dfrac{1}{2}[x^2\arctan x-x+\arctan x]+C$
\subsubsection{多次分部积分还原}
当式子中含有$\sin x$$\cos x$$e^x$这种积分后变化不大的因式时,可以适用多步分部积分,然后在右边计算的式子中得到左边目标式子一样的因式,然后移到一边就能得到目标式子的表达式。
\textbf{例题:}\medskip
$
\begin{aligned}
\int e^x\sin x\,\textrm{d}x & =\int\sin x\,\textrm{d}e^x \\
& =e^x\sin x-\int e^x\cos x\,\textrm{d}x \\
& =e^x\sin x-\int\cos x\,\textrm{d}e^x \\
& =e^x\sin x-\left[e^x\cos x+\int e^x\sin\,\textrm{d}x\right] \\
2\int e^x\sin x\,\textrm{d}x & =e^x\sin x-e^x\cos x
\end{aligned}
$
$\therefore\int e^x\sin x\,\textrm{d}x=\dfrac{e^x\sin x-e^x\cos}{2}+C$
$
\begin{aligned}
\int\sec^3x\,\textrm{d}x =&\int\sec x\,\textrm{d}\tan x \\
& =\sec x\tan x-\int\tan^2x\sec x\,\textrm{d}x \\
& =\sec x\tan x-\int\sec^3x\textrm{d}x+\int\sec x\textrm{d}x \\
2\int\sec^3x\,\textrm{d}x =&[\sec x\tan x+\ln\vert\sec x+\tan x\vert]
\end{aligned}
$
$\therefore\int\sec^3x\,\textrm{d}x =\dfrac{\sec x\tan x+\ln\vert\sec x+\tan x\vert}{2}+C$
如上所说分部积分的方法就是找到目标式子中两个因式好求的一部分进行积分,其中好求是指$\textrm{d}v$微分后这个结果会简化整个式子。
其中$e^x$$\sin x$$\cos x$这三个因式求微分后无法简化,所以无法对其微分,除非需要多次分部积分还原间接求出;$x^n$微分后会降幂,所以一般可以积分;而$\ln x$$\arctan x$$\arcsin x$微分会转换为幂函数相关的式子降低幂次,如果不对其微分则无法消去这三个函数,所以如果出现这三个因式必然优先微分。
所以常用的分部积分方式:
\begin{enumerate}
\item $\int x^ne^x\,\textrm{d}x$$\int x^n\sin x\,\textrm{d}x$$\int x^n\cos x\,\textrm{d}x$:对非幂函数的部分,即对$e^x$或三角函数进行分部。
\item $\int x^n\ln x\,\textrm{d}x$$\int x^n\arctan x\,\textrm{d}x$$\int x^n\arcsin x\,\textrm{d}x$:对幂函数的部分,即对$x^n$进行分部。
\item $\int e^x\sin x\,\textrm{d}x$$\int e^x\cos x\,\textrm{d}x$:对哪个部分进行分部都可以,而$e^x$进行分部积分时没有正负号的改变,所以对$e^x$进行分部积分,需要多次分部积分还原。
\end{enumerate}
\subsection{有理函数的积分}
两个多项式的商$\dfrac{P(x)}{Q(x)}$被称为有理函数,或有理分式。
假设该多项式之间没有公因式,当$P(x)$的次数小于$Q(x)$的次数时村各位真分式,否则称为假分式。
假分式可以分解为多项式与真分式之和。
真分式$\dfrac{P(x)}{Q(x)}$若可以分解为两个多项式的乘积:$\dfrac{P(x)}{Q(x)}=\dfrac{P_1(x)}{Q_1(x)}+\dfrac{P_2(x)}{Q_2(x)}$,则称为将真分式化为部分分式之和。
通过这种化简方式,可以在求以商的形式的有利函数的式子的积分时拆分因式,从而简化积分运算。
\section{定积分}
定积分是积分的一种,是函数在一个区间上积分和的极限。已知$f(x)$为速度函数,则$f'(x)$为速度变化率函数,$\textrm{d}f(x)$为瞬时位移,则$\int_{a}^bf(x)\,\textrm{d}x$为位移函数。
\subsection{定义}
设函数$f(x)$在区间$[a,b]$上连续,将区间分割为$n$个子区间:$[x_0,x_1],(x_1,x_2],$\\$(x_2,x_3],\cdots,(x_{n-1},x_n]$,其中$x_0=a$$x_n=b$。并可知各区间长度为$\Delta x_1=x_1-x_0\cdots$,在每个子区间$(x_{i-1},x_i]$上任意取一点$\xi_i(i=1,2,\cdots,n)$,做累计和$\sum\limits_{i=1}^nf(\xi_i)\Delta x_i$,这个式子被称为积分和。
$\lambda=\max{\Delta x_1,\Delta x_2,\cdots,\Delta x_n}$,从而$\lambda$为最大的区间长度,若$\lambda\to 0$时积分和极限存在,则这个极限就是函数在区间$[a,b]$的定积分,记为$\int_a^bf(x)\,\textrm{d}x$,并称函数$f(x)$在区间$[a,b]$上可积。
其中$a$为积分下限,$b$为积分上限,区间$[a,b]$为积分区间,函数$f(x)$为被积函数,$x$是积分变量,$f(x)\,\textrm{d}x$为被积表达式,$\int$为积分号。
\subsection{存在性}
\textcolor{aqua}{\textbf{定理:}}设函数$f(x)$在区间$[a,b]$上连续,则$f(x)$在该区间上可积。
\textcolor{aqua}{\textbf{定理:}}设函数$f(x)$在区间$[a,b]$上有界,且只有有限个间断点,则$f(x)$在该区间上可积。
\subsection{性质}
设函数$f(x)$在区间$[a,b]$上连续,则:
\begin{enumerate}
\item$a=b$时,$\int_a^bf(x)\,\textrm{d}x=0$
\item$a>b$时,$\int_a^bf(x)\,\textrm{d}x=-\int_b^af(x)\,\textrm{d}x$
\item $\int_a^bkf(x)\,\textrm{d}x=k\int_a^bf(x)\,\textrm{d}x$
\item $\int_a^b[f(x)\pm g(x)]\,\textrm{d}x=\int_a^bf(x)\,\textrm{d}x\pm\int_a^bg(x)\,\textrm{d}x$
\item $\int_a^bf(x)\,\textrm{d}x=\int_a^cf(x)\,\textrm{d}x+\int_c^bf(x)\,\textrm{d}x$,若$c$处于函数的可积区间。
\item$[a,b]$$f(x)\geqslant 0$,则$\int_a^bf(x)\,\textrm{d}x\geqslant 0$
\item$[a,b]$$f(x)\leqslant g(x)$,则$\int_a^bf(x)\,\textrm{d}x\leqslant\int_a^bg(x)\,\textrm{d}x$
\item 积分中值定理:$\exists\,\varepsilon\in[a,b]$,使得$\int_a^bf(x)\,\textrm{d}x=f(\varepsilon)(b-a)$
\end{enumerate}
证明积分中值定理:
设函数$f(x)$在区间$[a,b]$上连续,因为闭区间上连续函数必然有最大最小值,所以设最大值为$M$,最小值为$m$$M\geqslant m$
$m\leqslant f(x)\leqslant M$两边积分得到:$m(b-a)\leqslant\int_a^bf(x)\,\textrm{d}x\leqslant M(b-a)$
同时除以$b-a$得到:$m\leqslant\dfrac{1}{b-a}\int_a^bf(x)\,\textrm{d}x\leqslant M$
由连续函数的介值定理,必然存在一个$\varepsilon$,使得$f(\varepsilon)=\dfrac{1}{b-a}\int_a^bf(x)\,\textrm{d}x$
从而得到$\exists\,\varepsilon\in[a,b]$,使得$\int_a^bf(x)\,\textrm{d}x=f(\varepsilon)(b-a)$
\subsection{变限积分}
$f(x)$$[a,b]$上连续,且$\Phi(x)=\int_a^xf(t)\,\textrm{d}t(x\in[a,b])$,这个函数就是积分上限函数或叫积分变限函数。
\textcolor{aqua}{\textbf{定理:}}$f(x)$$[a,b]$上连续,则$\int_a^xf(t)\,\textrm{d}t$$[a,b]$$(\int_a^xf(t)\,\textrm{d}t)'=f(x)$
证明:设$x\in(a,b)$
$\dfrac{\Phi(x+\Delta x)-\Phi(x)}{\Delta x}=\dfrac{\int_a^{x+\Delta x}f(t)\,\textrm{d}t-\int_a^xf(t)\,\textrm{d}t}{\Delta x}=\dfrac{\int_x^{x+\Delta x}f(t)\,\textrm{d}t}{\Delta x}$
由积分中值定理存在$\xi$使得原式$=\dfrac{\Delta x\,f(\xi)}{\Delta x}=f(\xi)$
从而$\Phi'(x)=\lim\limits_{\Delta x\to 0}\dfrac{\Phi(x+\Delta x)-\Phi(x)}{\Delta x}=f(x)$
同理当$x=a,\Delta x>0$$x=b,\Delta x<0$时也同样成立。
\textbf{例题:}$F(x)=\int_0^{x^2}e^{-t^2}\,\textrm{d}t$的导数。
由定理,可以将式子看作复合函数求导(注意定理中积分上限为$x$,而这里不是$x$,但是对$x$求导,所以必须看作为一个复合函数求导)。
$F(x)=\int_0^ue^{-t^2}\,\textrm{d}t$$u=x^2$
$\therefore F'_x(x)=F'_u(x)\cdot u'_x=e^{-u^2}\cdot 2x=2xe^{-x^4}$
同理,如果是变下限的变限积分,则可以看作负的变上限积分进行运算,本质是一样的。
也同理如果上限下限都在变化则可以利用积分区间的可加性将这个积分的区间插入一个常数一般为0将一个积分式子变为两个积分式子再分别进行运算。
所以变限积分\textcolor{aqua}{\textbf{定理:}}$\phi(x)$$\psi(x)$都可导,$f(x)$连续,则$\dfrac{\textrm{d}}{\textrm{d}x}\int_{\psi(x)}^{\phi(x)}=f(\psi(x))\psi'(x)-f(\phi(x))\phi'(x)$
\textbf{例题:}求极限$\lim\limits_{x\to 0}\dfrac{\int_0^{\sin^2x}\ln(1+t)\,\textrm{d}t}{x(\sqrt{1+x^3}-1)}$
原式$=\lim\limits_{x\to 0}\dfrac{\ln(1+\sin^2x)2\sin x\cos x}{x(\sqrt{1+x^3}-1)}=\lim\limits_{x\to 0}\dfrac{x^2\cdot 2x\cdot 1}{\dfrac{4}{3}x^3}=\dfrac{3}{2}$\smallskip
\textcolor{aqua}{\textbf{定理:}}$f(x)$$[a,b]$上连续,则$\int_a^xf(t)\,\textrm{d}t$$f(x)$$[a,b]$上的一个原函数。
\subsection{牛顿-莱布尼茨公式}
\textcolor{aqua}{\textbf{定理:}}(微积分基本定理/牛顿-莱布尼茨公式)若函数$F(x)$是连续函数$f(x)$在区间$[a,b]$上的一个原函数,则$\int_a^bf(x)\,\textrm{d}x=F(b)-F(a)$
利用牛莱公式证明积分中值定理:
已知$F'(x)=f(x)$
$\int_a^bf(x)\,\textrm{d}x=F(b)-F(a)=F'(\xi)(b-a)=f(\xi)(b-a)(a<\xi b)$
牛-莱公式连接了微分学和积分学之间的关系。
\end{document}