mirror of
https://github.com/Didnelpsun/Math.git
synced 2026-02-09 05:23:54 +08:00
更新向量余解析几何
This commit is contained in:
Binary file not shown.
@@ -2,6 +2,9 @@
|
||||
% UTF8编码,ctexart现实中文
|
||||
\usepackage{color}
|
||||
% 使用颜色
|
||||
\definecolor{orange}{RGB}{255,127,0}
|
||||
\definecolor{violet}{RGB}{192,0,255}
|
||||
\definecolor{aqua}{RGB}{0,255,255}
|
||||
\usepackage{geometry}
|
||||
\setcounter{tocdepth}{4}
|
||||
\setcounter{secnumdepth}{4}
|
||||
@@ -34,6 +37,245 @@
|
||||
\newpage
|
||||
\pagestyle{plain}
|
||||
\setcounter{page}{1}
|
||||
\section{}
|
||||
|
||||
该部分的内容服务于后面的多元函数积分学。
|
||||
|
||||
\section{向量代数}
|
||||
|
||||
\subsection{向量及其表达形式}
|
||||
|
||||
\textcolor{violet}{\textbf{定义:}}既有方向又有大小的向量称为\textbf{向量}。
|
||||
|
||||
向量的相等性体现在大小和方向,与空间位置无关。
|
||||
|
||||
向量表达形式为$\vec{a}=(a_x,a_y,a_z)=a_x\vec{i}+a_y\vec{j}+a_z\vec{k}$。
|
||||
|
||||
\subsection{向量运算}
|
||||
|
||||
设$\vec{a}=(a_x,a_y,a_z)$,$\vec{b}=(b_x,b_y,b_z)$,$\vec{c}=(c_x,c_y,c_z)$,$\vec{a},\vec{b},\vec{c}$均不是零向量。
|
||||
|
||||
\subsubsection{数量积}
|
||||
|
||||
称为内积或点积。
|
||||
|
||||
\begin{itemize}
|
||||
\item $\vec{a}\cdot\vec{b}=(a_x,a_y,a_z)\cdot(b_x,b_y,b_z)=a_xb_x+a_yb_y+a_zb_z$。
|
||||
\item $\vec{a}\cdot\vec{b}=\vert a\vert\vert b\vert\cos\theta$,则$\cos\theta=\dfrac{a\cdot b}{\vert a\vert\vert b\vert}=\dfrac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{a_x^2+a_y^2+a_z^2}\cdot\sqrt{b_x^2+b_y^2+b_z^2}}$,其中$\theta$为$\vec{a},\vec{b}$夹角。
|
||||
\item $a\bot b\Leftrightarrow\theta=\dfrac{\pi}{2}\Leftrightarrow a\cdot b=\vert a\vert\vert b\vert\cos\theta=0\Leftrightarrow a_xb_x+a_yb_y+a_zb_z=0$。
|
||||
\item $Prj_ba=\dfrac{a\cdot b}{\vert b\vert}=\dfrac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{b_x^2+b_y^2+b_z^2}}$称$a$在$b$上的\textbf{投影}。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{向量积}
|
||||
|
||||
也称为外积、叉积。
|
||||
|
||||
\begin{itemize}
|
||||
\item $\vec{a}\times\vec{b}=\left\vert\begin{array}{ccc}
|
||||
\vec{i} & \vec{j} & \vec{k} \\
|
||||
a_x & a_y & a_z \\
|
||||
b_x & b_y & b_z
|
||||
\end{array}\right\vert$,其中$\vert a\times b\vert=\vert a\vert\vert b\vert\sin\theta$,用右手规则确定方向(转向角不超过$\pi$),其中$\theta$为$\vec{a},\vec{b}$夹角。
|
||||
\item $a//b\Leftrightarrow\theta=0$或$\pi\Leftrightarrow\dfrac{a_x}{b_x}=\dfrac{a_y}{b_y}=\dfrac{a_z}{b_z}$。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{混合积}
|
||||
|
||||
\begin{itemize}
|
||||
\item $[\vec{a}\vec{b}\vec{c}]=(a\times b)\cdot c=\left\vert\begin{array}{ccc}
|
||||
a_x & a_y & a_z \\
|
||||
b_x & b_y & b_z \\
|
||||
c_x & c_y & c_z \\
|
||||
\end{array}\right\vert$。
|
||||
\item $\left\vert\begin{array}{ccc}
|
||||
a_x & a_y & a_z \\
|
||||
b_x & b_y & b_z \\
|
||||
c_x & c_y & c_z \\
|
||||
\end{array}\right\vert=0\Leftrightarrow$三向量共面。
|
||||
\end{itemize}
|
||||
|
||||
\subsection{向量方向角与方向余项}
|
||||
|
||||
\begin{itemize}
|
||||
\item $\vec{a}$与$x$轴、$y$轴、$z$轴正向的夹角$\alpha$、$\beta$、$\gamma$为$\vec{a}$的\textbf{方向角}。
|
||||
\item $\cos\alpha$,$\cos\beta$,$\cos\gamma$称为$\vec{a}$的\textbf{方向余弦},且$\cos\alpha=\dfrac{a_x}{\vert\vec{a}\vert}$,$\cos\beta=\dfrac{a_y}{\vert\vec{a}\vert}$,$\cos\gamma=\dfrac{a_z}{\vert\vec{a}\vert}$。
|
||||
\item $a^\circ=\dfrac{\vec{a}}{\vert\vec{a}\vert}=(\cos\alpha,\cos\beta,\cos\gamma)$称为向量$\vec{a}$的\textbf{单位向量}(表示方向的向量)。
|
||||
\item 任意向量$\vec{r}=x\vec{i}+y\vec{j}+z\vec{k}=(r\cos\alpha,r\cos\beta,r\cos\gamma)=r(\cos\alpha,\cos\beta,\cos\gamma)$,$\cos\alpha$,$\cos\beta$,$\cos\gamma$称为$\vec{r}$的方向余弦,$r$为$\vec{r}$的模,$\cos\alpha=\dfrac{x}{\sqrt{x^2+y^2+z^2}}$,$\cos\beta=\dfrac{y}{\sqrt{x^2+y^2+z^2}}$,$\cos\gamma=\dfrac{z}{\sqrt{x^2+y^2+z^2}}$,$r=\sqrt{x^2+y^2+z^2}$。
|
||||
\end{itemize}
|
||||
|
||||
\section{空间解析几何}
|
||||
|
||||
\subsection{平面方程}
|
||||
|
||||
假设平面的法向量$\vec{n}=(A,B,C)$。
|
||||
|
||||
\begin{itemize}
|
||||
\item 一般式:$Ax+By+Cz+D=0$。
|
||||
\item 点法式:$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$。
|
||||
\item 三点式:$\left\vert\begin{array}{ccc}
|
||||
x-x_1 & y-y_1 & z-z_1 \\
|
||||
x-x_2 & y-y_2 & z-z_2 \\
|
||||
x-x_3 & y-y_3 & z-z_3 \\
|
||||
\end{array}\right\vert=0$(平面过不共线的三点)。
|
||||
\item 截距式:$\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1$(平面过$(a,0,0)$,$(0,b,0)$,$(0,0,c)$三点)。
|
||||
\end{itemize}
|
||||
|
||||
\subsection{直线方程}
|
||||
|
||||
假设直线的方向向量$\vec{\tau}=(l,m,n)$。
|
||||
|
||||
\begin{itemize}
|
||||
\item 一般式:$\left\{\begin{array}{l}
|
||||
A_1x+B_1y+C_1z+D_1=0,\vec{n}_1=(A_1,B_1,C_1) \\
|
||||
A_2x+B_2y+C_2z+D_2=0,\vec{n}_2=(A_2,B_2,C_2)
|
||||
\end{array}\right.$,其中$\vec{n}_1$不平行于$\vec{n}_2$。(两个平面的交线,该直线方向向量$\vec{\tau}=n_1\times n_2$)
|
||||
\item 点向式(标准式、对称式):$\dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n}$。(直线上一点与方向向量成比例)
|
||||
\item 参数式:$\left\{\begin{array}{l}
|
||||
x=x_0+lt \\
|
||||
y=y_0+mt \\
|
||||
z=z_0+nt
|
||||
\end{array}\right.$,$M(x_0,y_0,z_0)$为直线上已知点,$t$为参数。
|
||||
\item 两点式:$\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}$。(直线过不同的两点)
|
||||
\end{itemize}
|
||||
|
||||
\subsection{位置关系}
|
||||
|
||||
\subsubsection{点到平面距离}
|
||||
|
||||
点$P_0(x_0,y_0,z_0)$到平面$Ax+By+Cz+D=0$的距离为$d=$\\$\dfrac{\vert Ax_0+By_0+Cz_0+D\vert}{\sqrt{A^2+B^2+C^2}}$。
|
||||
|
||||
\subsubsection{直线关系}
|
||||
|
||||
设$\vec{\tau}_1=(l_1,m_1,n_1)$,$\vec{\tau}_2=(l_2,m_2,n_2)$分别为直线$L_1$,$L_2$的方向向量。
|
||||
|
||||
\begin{itemize}
|
||||
\item $L_1\bot L_2\Leftrightarrow\vec{\tau}_1\bot\vec{\tau}_2\Leftrightarrow l_1l_2+m_1m_2+n_1n_2=0$。
|
||||
\item $L_1//L_2\Leftrightarrow\vec{\tau}_1//\vec{\tau}_2\Leftrightarrow\dfrac{l_1}{l_2}\Leftrightarrow\dfrac{m_1}{m_2}=\dfrac{n_1}{n_2}$。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{平面关系}
|
||||
|
||||
设平面$\pi_1$,$\pi_2$的法向量分别为$\vec{n}_1=(A_1,B_1,C_1)$,$\vec{n}_2=(A_2,B_2,C_2)$。
|
||||
|
||||
\begin{itemize}
|
||||
\item $\pi_1\bot\pi_2\Leftrightarrow\vec{n}_1\bot\vec{n}_2\Leftrightarrow A_1A_2+B_1B_2+C_1C_2=0$。
|
||||
\item $\pi_1//\pi_2\Leftrightarrow\vec{n}_1//\vec{n}_2\Leftrightarrow\dfrac{A_1}{A_2}=\dfrac{B_1}{B_2}=\dfrac{C_1}{C_2}$。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{直线与平面关系}
|
||||
|
||||
设直线$L$的方向向量为$\tau=(l,m,n)$,平面$\vec{\tau}$的法向量为$\vec{n}=(A,B,C)$。
|
||||
|
||||
\begin{itemize}
|
||||
\item $L\bot\pi\Leftrightarrow\vec{\tau}//\vec{n}\Leftrightarrow\dfrac{A}{l}=\dfrac{B}{m}=\dfrac{C}{n}$。
|
||||
\item $L//\pi\Leftrightarrow\vec{\tau}\bot\vec{n}\Leftrightarrow Al+Bm+Cn=0$。
|
||||
\end{itemize}
|
||||
|
||||
\subsection{空间曲线}
|
||||
|
||||
\subsubsection{表达式}
|
||||
|
||||
\begin{itemize}
|
||||
\item 一般式:$\varGamma:\left\{\begin{array}{l}
|
||||
F(x,y,z)=0 \\
|
||||
G(x,y,z)=0
|
||||
\end{array}\right.$,表示两个曲面的交线。
|
||||
\item 参数方程:$\varGamma:\left\{\begin{array}{l}
|
||||
x=\phi(t) \\
|
||||
y=\psi(t) \\
|
||||
z=\omega(t)
|
||||
\end{array}\right.$,$t\in[\alpha,\beta]$。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{空间曲线在坐标面投影}
|
||||
|
||||
如求曲线$\varOmega$在$xOy$平面上的投影曲线,讲$\varGamma:\left\{\begin{array}{l}
|
||||
F(x,y,z)=0 \\
|
||||
G(x,y,z)=0
|
||||
\end{array}\right.$中的$z$消去,得到$\varphi(x,y)=0$,则曲线$\varOmega$在$xOy$面上的投影曲线包含于$\left\{\begin{array}{l}
|
||||
\varphi(x,y)=0 \\
|
||||
z=0
|
||||
\end{array}\right.$。
|
||||
|
||||
\subsection{空间曲面}
|
||||
|
||||
\subsubsection{曲面方程}
|
||||
|
||||
隐式表达式:$F(x,y,z)=0$,显式表达式:$z=z(x,y)$。
|
||||
|
||||
\subsubsection{二次曲面}
|
||||
|
||||
\begin{itemize}
|
||||
\item 球面:$x^2+y^2+z^2=r^2$。
|
||||
\item 椭球面:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1$。
|
||||
\item 单叶双曲面:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}-\dfrac{z^2}{c^2}=1$。
|
||||
\item 双叶双曲面:$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}-\dfrac{z^2}{c^2}=1$。
|
||||
\item 椭圆抛物面:$\dfrac{x^2}{2p}+\dfrac{y^2}{2q}=z$($p,q>0$)。(常考旋转抛物面$x^2+y^2=z$)
|
||||
\item 椭圆锥面:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}$。(常考旋转锥面$z=\sqrt{x^2+y^2}$)
|
||||
\item 双曲抛物面(马鞍面):$-\dfrac{x^2}{2p}+\dfrac{y^2}{2q}=z$($p,q>0$)。(可能考$z=xy$)
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{柱面}
|
||||
|
||||
空间解析几何中一般认为缺少变量的方程为柱面。
|
||||
|
||||
是动直线沿定曲线平行移动所形成的曲面。
|
||||
|
||||
\begin{itemize}
|
||||
\item 椭圆柱面:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$(当$a=b$为圆柱面)。
|
||||
\item 双曲柱面:$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$。
|
||||
\item 抛物柱面:$y=ax^2$。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{旋转曲面}
|
||||
|
||||
绕某轴转,其就不变,把另外一个字母写成另外两个字母的平方和的开方。
|
||||
|
||||
是曲线$\varGamma$绕一条定直线旋转一周所形成的曲面。
|
||||
|
||||
给定一条直线$L:\dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n}$,其方向向量为$\vec{\tau}(l,m,n)$,上有一点$P_0(x_0,y_0,z_0)$。
|
||||
|
||||
现在给定一条曲线$\varGamma:\left\{\begin{array}{l}
|
||||
F(x,y,z)=0 \\
|
||||
G(x,y,z)=0
|
||||
\end{array}\right.$。
|
||||
|
||||
在$\varGamma$上找一点$P_1(x_1,y_1,z_1)$,然后再讲$P_1$绕$L$旋转一周得到一个纬圆,去纬圆上一点$P(x,y,z)$,则$P$为旋转曲面上任意一点。
|
||||
|
||||
因为$P_1$在曲线$\varGamma$上,所以$F(x_1,y_1,z_1)=0$,$G(x_1,y_1,z_1)=0$。
|
||||
|
||||
同一个纬圆到$L$上的$P_0$距离相等,既$\vert\overrightarrow{P_1P_0}\vert=\vert\overrightarrow{PP_0}\vert$,即$(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2=(x-x_0)^2+(y-y_0)^2+(z-z_0)^2$。
|
||||
|
||||
每一个纬圆的平面与旋转中心$L$的方向向量$\vec{\tau}$垂直,而$P_1P$在平面上,所以该连线向量$\overrightarrow{P_1P}\bot\vec{\tau}$,即$l(x-x_1)+m(y-y_1)+n(z-z_1)=0$。
|
||||
|
||||
为了得到旋转曲面面积,需要消去$x_1,y_1,z_1$,得到$H(x,y,z)=0$。
|
||||
|
||||
\textbf{例题:}求曲线$L:\left\{\begin{array}{l}
|
||||
x-y+2z-1=0 \\
|
||||
x-3y-2z+1=0
|
||||
\end{array}\right.$绕$y$轴旋转一周所形成的曲面方程。
|
||||
|
||||
解:令$P_1(x_1,y_1,z_1)$在曲线上,所以$x_1-y_1+2z_1-1=0$,$x_1-3y_1-2z_1+1=0$。
|
||||
|
||||
然后任意一点$P(x,y,z)$到$P_0(x_0,y_0,z_0)$的距离与$P_1$到$P_0$距离相同,取$P_0(0,0,0)$,则$x_1^2+y_1^2+z_1^2=x^2+y^2+z^2$。
|
||||
|
||||
两条连线垂直$y$轴,即$\overrightarrow{P_1P}\bot(0,1,0)$,即$y=y_1$。
|
||||
|
||||
消去$x_1,y_1,z_1$,根据$y=y_1$,所以$x_1^2+z_1^2=x^2+z^2$。
|
||||
|
||||
根据交线方程解得$x_1=2y$,$z_1=\dfrac{1}{2}(1-y)$。
|
||||
|
||||
再代入得到$x^2+z^2=(2y)^2+\dfrac{1}{4}(1-y)^2$,解得$x^2-\dfrac{17}{4}y^2+z^2+\dfrac{y}{2}-\dfrac{1}{4}=0$。
|
||||
|
||||
\section{场论初步}
|
||||
|
||||
\subsection{方向导数}
|
||||
|
||||
\subsection{梯度}
|
||||
|
||||
\subsection{方向导数与梯度关系}
|
||||
|
||||
\subsection{散度}
|
||||
|
||||
\subsection{旋度}
|
||||
|
||||
\end{document}
|
||||
|
||||
Binary file not shown.
@@ -355,4 +355,86 @@ $P2:A_2=-2,B_2=-2,C_2=-2,\Delta_2=B_2^2-A_2C_2=0$。该方法失效。
|
||||
|
||||
% \subsubsection{闭区域上最值}
|
||||
|
||||
\section{多元函数微分应用}
|
||||
|
||||
\subsection{空间曲线的切线与法平面}
|
||||
|
||||
\subsubsection{参数方程}
|
||||
|
||||
设空间曲线$\varGamma$由参数方程$\left\{\begin{array}{l}
|
||||
x=\phi(t) \\
|
||||
y=\psi(t) \\
|
||||
z=\omega(t)
|
||||
\end{array}\right.$给出,其中$\phi(t),\psi(t),\omega(t)$均可导,$P_0(x_0,y_0,z_0)$为$\varOmega$上的点,且当$t=t_0$时,$\phi'(t_0)$,$\psi'(t_0)$,$\omega'(t_0)$均不为0,则:
|
||||
|
||||
\begin{itemize}
|
||||
\item 曲线$\varGamma$在点$P_0(x_0,y_0,z_0)$处的切向量为$\vec{\tau}=(\phi'(t_0),\psi'(t_0),\omega'(t_0))$。
|
||||
\item 曲线$\varGamma$在点$P_0(x_0,y_0,z_0)$处的切线方程为$\dfrac{x-x_0}{\phi'(t_0)}=\dfrac{y-y_0}{\psi'(t_0)}=\dfrac{z-z_0}{\omega'(t_0)}$。
|
||||
\item 曲线$\varGamma$在点$P_0(x_0,y_0,z_0)$处的法平面(过$P_0$且与切线垂直的平面)方程为$\phi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0$。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{交面式方程}
|
||||
|
||||
设空间曲线$\varGamma$由交面方程$\left\{\begin{array}{l}
|
||||
F(x,y,z)=0 \\
|
||||
G(x,y,z)=0
|
||||
\end{array}\right.$给出,则:
|
||||
|
||||
\begin{itemize}
|
||||
\item 曲线$\varGamma$在点$P_0(x_0,y_0,z_0)$处的切向量为\\$\vec{\tau}=\left(\left\vert\begin{array}{cc}
|
||||
F_y' & F_z' \\
|
||||
G_y' & G_z'
|
||||
\end{array}\right\vert_{P_0},\left\vert\begin{array}{ll}
|
||||
F_z' & F_x' \\
|
||||
G_z' & G_x'
|
||||
\end{array}\right\vert_{P_0},\left\vert\begin{array}{ll}
|
||||
F_x' & F_y' \\
|
||||
G_x' & G_y'
|
||||
\end{array}\right\vert_{P_0}\right)$。
|
||||
\item 曲线$\varGamma$在点$P_0(x_0,y_0,z_0)$处的切线方程为\\$\dfrac{x-x_0}{\left\vert\begin{array}{cc}
|
||||
F_y' & F_z' \\
|
||||
G_y' & G_z'
|
||||
\end{array}\right\vert_{P_0}},\dfrac{y-y_0}{\left\vert\begin{array}{ll}
|
||||
F_z' & F_x' \\
|
||||
G_z' & G_x'
|
||||
\end{array}\right\vert_{P_0}},\dfrac{z-z_0}{\left\vert\begin{array}{ll}
|
||||
F_x' & F_y' \\
|
||||
G_x' & G_y'
|
||||
\end{array}\right\vert_{P_0}}$。
|
||||
\item 曲线$\varGamma$在点$P_0(x_0,y_0,z_0)$处的法平面方程为\\$\left\vert\begin{array}{cc}
|
||||
F_y' & F_z' \\
|
||||
G_y' & G_z'
|
||||
\end{array}\right\vert_{P_0}(x-x_0)+\left\vert\begin{array}{ll}
|
||||
F_z' & F_x' \\
|
||||
G_z' & G_x'
|
||||
\end{array}\right\vert_{P_0}(y-y_0)+\left\vert\begin{array}{ll}
|
||||
F_x' & F_y' \\
|
||||
G_x' & G_y'
|
||||
\end{array}\right\vert_{P_0}(z-z_0)=0$。
|
||||
\end{itemize}
|
||||
|
||||
\subsection{空间曲面的切平面与法线}
|
||||
|
||||
\subsubsection{隐式}
|
||||
|
||||
设空间曲面$\varSigma$由方程$F(x,y,z)=0$给出,$P_0(x_0,y_0,z_0)$是$\varSigma$上的点,则:
|
||||
|
||||
\begin{itemize}
|
||||
\item 曲面$\varSigma$在点$P_0(x_0,y_0,z_0)$处的法向量为$\vec{n}=(F_x'(x_0,y_0,z_0),F_y'(x_0,y_0,z_0),$\\$F_z'(x_0,y_0,z_0))$且法线方程为$\dfrac{x-x_0}{F_x'(x_0,y_0,z_0)}=\dfrac{y-y_0}{F_y'(x_0,y_0,z_0)}=\dfrac{z-z_0}{F_z'(x_0,y_0,z_0}$。
|
||||
\item 曲面$\varSigma$在点$P_0(x_0,y_0,z_0)$处的切平面方程为$F_x'(x_0,y_0,z_0)(x-x_0)+F_y'$\\$(x_0,y_0,z_0)(y-y_0)+F_z'(x_0,y_0,z_0)(z-z_0)=0$。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{显式}
|
||||
|
||||
设空间曲面$\varSigma$由方程$z=f(x,y)$给出,令$F(x,y,z)=f(x,y)-z$,假定法向量的方向向下,即其余$z$轴正向所成的角为钝角,即$z$为-1,则:
|
||||
|
||||
\begin{itemize}
|
||||
\item 曲面$\varSigma$在点$P_0(x_0,y_0,z_0)$处的法向量为$\vec{n}=(f_x'(x_0,y_0),f_y'(x_0,y_0),-1)$,且法线方程为$\dfrac{x-x_0}{f_x'(x_0,y_0)}=\dfrac{y-y_0}{f_y'(x_0,y_0)}=\dfrac{z-z_0}{-1}$。
|
||||
\item 曲面$\varSigma$在点$P_0(x_0,y_0,z_0)$处的切平面方程为$f_x'(x_0,y_0)(x-x_0)+f_y'(x_0,y_0)$\\$(y-y_0)-(z-z_0)=0$。
|
||||
\end{itemize}
|
||||
|
||||
若是反之成锐角,则将里面所有的-1都换成1。
|
||||
|
||||
若用$\alpha$,$\beta$,$\gamma$表示曲面$z=f(x,y)$在点$(x_0,y_0,z_0)$处的法向量的方向角,并这里假定法向量的方向是向上的,即其余$z$轴正向所成的角$\gamma$为锐角,则法向量\textbf{方向余弦}为$\cos\alpha=\dfrac{-f_x}{\sqrt{1+f_x^2+f_y^2}}$,$\cos\beta=\dfrac{-f_y}{\sqrt{1+f_x^2+f_y^2}}$,$\cos\gamma=\dfrac{1}{\sqrt{1+f_x^2+f_y^2}}$,其中$f_x=f_x'(x_0,y_0)$,$f_y=f_y'(x_0,y_0)$。
|
||||
|
||||
\end{document}
|
||||
|
||||
Binary file not shown.
@@ -427,4 +427,40 @@ $x$的取值指其幂指数的收敛域。第七个幂函数问题较复杂,
|
||||
|
||||
\section{傅里叶级数}
|
||||
|
||||
\subsection{* 三角级数}
|
||||
|
||||
\textcolor{violet}{\textbf{定义:}}将正弦函数$A_n\sin(n\omega t+\varphi_n)$按三角公式变形得到$A_n\sin\varphi_n\cos n\omega t+A_n\cos\varphi_n\sin n\omega t$,令$\dfrac{a_0}{2}=A_0$,$a_n=A\sin\varphi_n$,$b_n=A_n\cos\varphi_n$,$\omega=\dfrac{\pi}{l}$,则$\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty\left(a_n\cos\dfrac{n\pi t}{l}+b_n\sin\dfrac{n\pi t}{l}\right)$。这个级数就是\textbf{三角级数}。
|
||||
|
||||
\subsection{函数展开为傅里叶级数}
|
||||
|
||||
\textcolor{violet}{\textbf{定义:}}设$f(x)$在$[-l,l]$上连续或只有有限个第一类间断点,且至多只有有限个真正的极值点,则$f(x)$的傅里叶级数处处收敛,记起和函数为$S(x)$,有$S(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty\left(a_n\cos\dfrac{n\pi}{l}x+b_n\sin\dfrac{n\pi}{l}x\right)$。
|
||||
|
||||
$\displaystyle{a_n=\dfrac{1}{l}\int_{-l}^lf(x)\cos\dfrac{n\pi}{l}x\,\textrm{d}x}$,$\displaystyle{b_n=\dfrac{1}{l}\int_{-l}^lf(x)\sin\dfrac{n\pi}{l}x\,\textrm{d}x}$,$n=1,2,\cdots$。
|
||||
|
||||
其中三角函数也可以展开为幂级数,所以最后都能通过幂级数展开。
|
||||
|
||||
\textbf{例题:}将$f(x)=1-x^2$($-\pi\leqslant x\leqslant\pi$)展开为傅里叶级数。
|
||||
|
||||
解:$S(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty\left(a_n\cos\dfrac{n\pi}{l}x+b_n\sin\dfrac{n\pi}{l}x\right)$。
|
||||
|
||||
其中$a_0=\dfrac{1}{\pi}\int\limits_{-\pi}^\pi(1-x^2)\,\textrm{d}x=\dfrac{2}{\pi}\int\limits_0^\pi(1-x^2)\,\textrm{d}x=2-\dfrac{2}{3}\pi^2$。
|
||||
|
||||
$a_n=\dfrac{1}{\pi}\int\limits_{-\pi}^\pi(1-x^2)\cos nx\,\textrm{d}x=\dfrac{2}{\pi}(\int\limits_0^\pi\cos nx\,\textrm{d}x-\int\limits_0^\pi x^2\cos nx\,\textrm{d}x)=\dfrac{4}{n^2}(-1)^{n+1}$。
|
||||
|
||||
$b_n=\dfrac{1}{\pi}\int\limits_{-\pi}^\pi(1-x^2)\sin nx\,\textrm{d}x=0$(奇函数乘偶函数为奇函数,且上下限对称)
|
||||
|
||||
$f(x)\sim S(x)=1-\dfrac{\pi^2}{3}+\sum\limits_{n=1}^\infty\dfrac{4}{n^2}(-1)^{n+1}\cos nx$。
|
||||
|
||||
\textcolor{violet}{\textbf{定义:}}当$f(x)$是偶函数,则$\sin$被消去,$f(x)\sim S(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty a_n\cos\dfrac{n\pi}{l}x$,称为\textbf{余弦级数}。
|
||||
|
||||
\textcolor{violet}{\textbf{定义:}}当$f(x)$是奇函数,则$\cos$被消去,$f(x)\sim S(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty b_n\sin\dfrac{n\pi}{l}x$,称为\textbf{正弦级数}。
|
||||
|
||||
若$f(x)$因为定义区间不对称导致无奇偶性,则补充定义域,使其称为奇偶函数。
|
||||
|
||||
迪利克雷定理\textcolor{violet}{\textbf{定义:}}$f(x)\sim S(x)=\left\{\begin{array}{ll}
|
||||
f(x), & x\text{为连续点} \\
|
||||
\dfrac{f(x-0)+f(x+0)}{2}, & x\text{为间断点} \\
|
||||
\dfrac{f(-l+0)+f(l-0)}{2}, & x=\pm l
|
||||
\end{array}\right.$
|
||||
|
||||
\end{document}
|
||||
|
||||
Binary file not shown.
@@ -342,8 +342,18 @@ $f(x)-f(x)=0$,所以得证。
|
||||
|
||||
\subsection{解法}
|
||||
|
||||
使用换元法。
|
||||
|
||||
当$x>0$时,令$x=e^t$,则$t=\ln x$,$\dfrac{\textrm{d}t}{\textrm{d}x}=\dfrac{1}{x}$,$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{\textrm{d}y}{\textrm{d}t}\dfrac{\textrm{d}t}{\textrm{d}x}=\dfrac{1}{x}\dfrac{\textrm{d}y}{\textrm{d}t}$,$\dfrac{\textrm{d}^2y}{\textrm{d}x^2}=\dfrac{\textrm{d}}{\textrm{d}x}\left(\dfrac{1}{x}\dfrac{\textrm{d}y}{\textrm{d}t}\right)=-\dfrac{1}{x^2}\dfrac{\textrm{d}y}{\textrm{d}t}+\dfrac{1}{x}\dfrac{\textrm{d}}{\textrm{d}x}\left(\dfrac{\textrm{d}y}{\textrm{d}t}\right)=-\dfrac{1}{x^2}\dfrac{\textrm{d}y}{\textrm{d}t}+\dfrac{1}{x^2}\dfrac{\textrm{d}^2y}{\textrm{d}t^2}$,方程化为$\dfrac{\textrm{d}^2y}{\textrm{d}t^2}+(p-1)\dfrac{\textrm{d}y}{\textrm{d}t}+qy=f(e^t)$,解出结果,组后用$t=\ln x$回代。
|
||||
|
||||
当$x<0$是,令$x=-e^t$,同理可得。
|
||||
|
||||
\textbf{例题:}求欧拉方程$x^2\dfrac{\textrm{d}^2y}{\textrm{d}x^2}+4x\dfrac{\textrm{d}y}{\textrm{d}x}+2y=0$($x>0$)的通解。
|
||||
|
||||
解:可以直接利用公式,变为$\dfrac{\textrm{d}^2y}{\textrm{d}t^2}+3\dfrac{\textrm{d}y}{\textrm{d}t}+2y=0$
|
||||
|
||||
即$y''+3y'+2y=0$,特征方程$\lambda^2+3\lambda+2=0$,$\lambda_1=-1$,$\lambda_2=-2$。
|
||||
|
||||
$\therefore y=C_1e^{-x}+C_2e^{-2x}$。代入$x=e^t$,$y=\dfrac{C_1}{x}+\dfrac{C_2}{x^2}$。
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user