1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-07 12:34:41 +08:00
This commit is contained in:
Didnelpsun
2022-07-04 23:16:11 +08:00
parent 45c32aaca3
commit c5450c5786
2 changed files with 3 additions and 1 deletions

View File

@@ -127,6 +127,8 @@ $\text{罗尔定理}\xrightleftharpoons[\text{特例:}f(a)=f(b)]{\text{泛化
\section{洛必达法则}
\subsection{定理}
若当$x\to a$$x\to\infty$时两个函数$f(x)F(x)$都趋向0或无穷大那么极限$\lim\limits_{x\to \frac{a}{\infty}}\dfrac{f(x)}{F(x)}$可能存在,也可能不存在,这种极限就是不定式。\medskip
\textcolor{aqua}{\textbf{定理:}}
@@ -138,7 +140,7 @@ $\text{罗尔定理}\xrightleftharpoons[\text{特例:}f(a)=f(b)]{\text{泛化
\item $\lim\limits_{x\to a}\dfrac{f(x)}{g(x)}=\lim\limits_{x\to a}\dfrac{f'(x)}{g'(x)}$$\lim\limits_{x\to\infty}\dfrac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\dfrac{f'(x)}{g'(x)}$
\end{enumerate}
\textcolor{orange}{注意}
\subsection{注意事项}
\begin{enumerate}
\item 如果函数比值不为$\dfrac{0}{0}$$\dfrac{\infty}{\infty}$型,则不能使用洛必达法则。