1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-07 04:23:42 +08:00

更新多元微分

This commit is contained in:
Didnelpsun
2021-07-17 23:16:30 +08:00
parent bf12e41ca8
commit cbb598ca9e
15 changed files with 878 additions and 476 deletions

View File

@@ -599,9 +599,23 @@ $=\displaystyle{\int_0^1\dfrac{1+x}{1+x^2}\textrm{d}x}=\displaystyle{\int_0^1\df
$=\left[\arctan x+\dfrac{1}{2}\ln(1+x^2)\right]_0^1=\dfrac{\pi}{4}+\dfrac{1}{2}\ln2$
\subsection{变限积分}
\subsection{变限积分与极限}
\subsection{牛莱公式}
变限积分也常与极限共同出现。
\textbf{例题:}$f(x)$连续,$f(0)=0$$f'(0)=\pi$,求$\lim\limits_{x\to0}\dfrac{\int_0^xf(t)\,\textrm{d}t}{x^2}$
解:$=\lim\limits_{x\to0}\dfrac{f(x)}{2x}=\dfrac{1}{2}\lim\limits_{x\to0}\dfrac{f(x)-f(0)}{x-0}=\dfrac{1}{2}f'(0)=\dfrac{\pi}{2}$
\textbf{例题:}$f(x)$连续,$F(x)=\int_0^x(x-t)f(t)\,\textrm{d}t$,求$F''(x)$
解:因为$x$$t$混合在一起很麻烦,$x$为上限是常数,$t$为积分变量。
$F(x)=\int_0^xxf(t)\,\textrm{d}t-\int_0^xtf(t)\,\textrm{d}t=x\int_0^xf(t)\,\textrm{d}t-\int_0^xtf(t)\,\textrm{d}t$
$\therefore F'(x)=\int_0^xf(t)\,\textrm{d}t+xf(x)-xf(x)=\int_0^xf(t)\,\textrm{d}t$
$\therefore F''(x)=f(x)$
\subsection{换元积分}

File diff suppressed because it is too large Load Diff

View File

@@ -830,24 +830,30 @@ $
\subsection{\texorpdfstring{$\lim\limits_{x\to 0}\dfrac{\sin x}{x}=1$}{}}
证明:$x\to 0$$x\in[0,\dfrac{\pi}{2}]$
证明:
\begin{tikzpicture}[scale=1.5]
\draw (0,0) circle (1);
\filldraw[black] (0,0) node[below]{$O$};
\draw[black](0,0) -- (1,0) node[right]{$A$};
\draw[black](0,0) -- (1/2,{sqrt(3)/2}) node[above]{$B$};
\draw[black](1/2,{sqrt(3)/2}) -- (1/2,0) node[below]{$D$};
\draw[black](1,0) -- (1,{sqrt(3)}) node[above]{$C$};
\draw[black](1,0) -- (1/2,{sqrt(3)/2});
\draw[black](1,{sqrt(3)}) -- (1/2,{sqrt(3)/2});
\end{tikzpicture}
\begin{minipage}{0.7\linewidth}
$x\to 0$$x\in[0,\dfrac{\pi}{2}]$
$\angle AOB$的弧度为$x$,圆$O$的半径为$1$,则$OD=\sin x$
$\angle AOB$的弧度为$x$,圆$O$的半径为$1$,则$OD=\sin x$
$S_\vartriangle AOB=\dfrac{\sin x}{2}$。根据扇形面积公式:$S_{\text{扇形}}AOB=\dfrac{x}{2}$
$S_\vartriangle AOB=\dfrac{\sin x}{2}$。根据扇形面积公式:$S_{\text{扇形}}AOB=\dfrac{x}{2}$
$\because CA=\tan x$,则$S_\vartriangle AOC=\dfrac{\tan x}{2}$
$\because CA=\tan x$,则$S_\vartriangle AOC=\dfrac{\tan x}{2}$
\end{minipage}
\hfill
\begin{minipage}{0.2\linewidth}
\begin{tikzpicture}[scale=1.125]
\draw (0,0) circle (1);
\filldraw[black] (0,0) node[below]{$O$};
\draw[black](0,0) -- (1,0) node[right]{$A$};
\draw[black](0,0) -- (1/2,{sqrt(3)/2}) node[above]{$B$};
\draw[black](1/2,{sqrt(3)/2}) -- (1/2,0) node[below]{$D$};
\draw[black](1,0) -- (1,{sqrt(3)}) node[above]{$C$};
\draw[black](1,0) -- (1/2,{sqrt(3)/2});
\draw[black](1,{sqrt(3)}) -- (1/2,{sqrt(3)/2});
\end{tikzpicture}
\end{minipage}
根据图,在$x\in[0,\dfrac{\pi}{2}]$$\sin x<x<\tan x$
@@ -957,64 +963,80 @@ $=e^{\lim\limits_{x\to\infty}\frac{\left(\frac{1}{1+\frac{1}{x}}\right)\cdot\lef
\subsubsection{可去间断点(可补间断点)}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{x\to x_0}f(x)=A\neq f(x_0)$(甚至可以没有定义)。
\begin{tikzpicture}
\draw[-latex](-0.5,0) -- (3,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,3) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick, domain=-0.5:2] plot (\x,{pow(e,\x-1)});
\filldraw[white, draw=black, line width=1pt] (1,1) circle (2pt);
\draw[black, densely dashed](1,2) -- (0,2) node[left]{$B$};
\draw[black, densely dashed](1,1) -- (0,1) node[left]{$A$};
\draw[black, densely dashed](1,2) -- (1,0) node[below]{$x_0$};
\filldraw[black] (1,2) circle (2pt) node[above]{$f(x_0)=B$};
\filldraw[black] (1,1) node[right]{$\lim\limits_{x\to x_0}=A$};
\end{tikzpicture}
\begin{minipage}{0.6\linewidth}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{x\to x_0}f(x)=A\neq f(x_0)$(甚至可以没有定义)。
\end{minipage}
\hfill
\begin{minipage}{0.3\linewidth}
\begin{tikzpicture}
\draw[-latex](-0.5,0) -- (3,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,3) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick, domain=-0.5:2] plot (\x,{pow(e,\x-1)});
\filldraw[white, draw=black, line width=1pt] (1,1) circle (2pt);
\draw[black, densely dashed](1,2) -- (0,2) node[left]{$B$};
\draw[black, densely dashed](1,1) -- (0,1) node[left]{$A$};
\draw[black, densely dashed](1,2) -- (1,0) node[below]{$x_0$};
\filldraw[black] (1,2) circle (2pt) node[above]{$f(x_0)=B$};
\filldraw[black] (1,1) node[right]{$\lim\limits_{x\to x_0}=A$};
\end{tikzpicture}
\end{minipage}
\subsubsection{跳跃间断点}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{x\to x_0^-}f(x)$$\lim\limits_{x\to x_0^+}f(x)$都存在,但是$\lim\limits_{x\to x_0^-}f(x)\neq\lim\limits_{x\to x_0^+}f(x)$
\begin{tikzpicture}
\draw[-latex](-0.5,0) -- (3,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,3) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick, domain=-0.5:1] plot (\x,{pow(e,\x-1)});
\draw[black, thick, domain=1:1.5] plot (\x,{pow(e,\x-1)+1});
\filldraw[white, draw=black, line width=1pt] (1,1) circle (2pt);
\draw[black, densely dashed](1,2) -- (0,2) node[left]{$B$};
\draw[black, densely dashed](1,1) -- (0,1) node[left]{$A$};
\draw[black, densely dashed](1,2) -- (1,0) node[below]{$x_0$};
\filldraw[black] (1,2) circle (2pt) node[above]{$f(x_0)=B$};
\filldraw[black] (1,1) node[right]{$\lim\limits_{x\to x_0}=A$};
\end{tikzpicture}
\begin{minipage}{0.6\linewidth}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{x\to x_0^-}f(x)$$\lim\limits_{x\to x_0^+}f(x)$都存在,但是$\lim\limits_{x\to x_0^-}f(x)\neq\lim\limits_{x\to x_0^+}f(x)$
\end{minipage}
\hfill
\begin{minipage}{0.3\linewidth}
\begin{tikzpicture}
\draw[-latex](-0.5,0) -- (3,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,3) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick, domain=-0.5:1] plot (\x,{pow(e,\x-1)});
\draw[black, thick, domain=1:1.5] plot (\x,{pow(e,\x-1)+1});
\filldraw[white, draw=black, line width=1pt] (1,1) circle (2pt);
\draw[black, densely dashed](1,2) -- (0,2) node[left]{$B$};
\draw[black, densely dashed](1,1) -- (0,1) node[left]{$A$};
\draw[black, densely dashed](1,2) -- (1,0) node[below]{$x_0$};
\filldraw[black] (1,2) circle (2pt) node[above]{$f(x_0)=B$};
\filldraw[black] (1,1) node[right]{$\lim\limits_{x\to x_0}=A$};
\end{tikzpicture}
\end{minipage} \medskip
可去间断点与跳跃间断点的左右极限都存在的间断点都称为第一类间断点。
\subsubsection{无穷间断点}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{x\to x_0}f(x)=\infty$,或至少一个方向为无穷大(定义分歧)。如$y=\dfrac{1}{x}$$x=0$处为无穷间断点。
\begin{tikzpicture}
\draw[-latex](-2,0) -- (2,0) node[below]{$x$};
\draw[-latex](0,-2) -- (0,2) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick, domain=0.5:2] plot (\x,{pow(\x,-1)});
\draw[black, thick, domain=-2:-0.5] plot (\x,{pow(\x,-1)});
\end{tikzpicture}
\begin{minipage}{0.6\linewidth}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{x\to x_0}f(x)=\infty$,或至少一个方向为无穷大(定义分歧)。如$y=\dfrac{1}{x}$$x=0$处为无穷间断点。
\end{minipage}
\hfill
\begin{minipage}{0.3\linewidth}
\begin{tikzpicture}
\draw[-latex](-2,0) -- (2,0) node[below]{$x$};
\draw[-latex](0,-2) -- (0,2) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick, domain=0.5:2] plot (\x,{pow(\x,-1)});
\draw[black, thick, domain=-2:-0.5] plot (\x,{pow(\x,-1)});
\end{tikzpicture}
\end{minipage}
\subsubsection{振荡间断点}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{x\to x_0}f(x)$为振荡不存在。如$\lim\limits_{x\to 0}\sin\dfrac{1}{x}$$x=0$就是振荡间断点。
\begin{tikzpicture}
\draw[-latex](-2,0) -- (2,0) node[below]{$x$};
\draw[-latex](0,-1.5) -- (0,1.5) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick, domain=0.01:2] plot (\x,{sin(pow(\x,-1) r)});
\draw[black, thick, domain=-2:-0.01] plot (\x,{sin(pow(\x,-1) r)});
\end{tikzpicture}
\begin{minipage}{0.6\linewidth}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{x\to x_0}f(x)$为振荡不存在。如$\lim\limits_{x\to 0}\sin\dfrac{1}{x}$$x=0$就是振荡间断点。
\end{minipage}
\hfill
\begin{minipage}{0.3\linewidth}
\begin{tikzpicture}
\draw[-latex](-2,0) -- (2,0) node[below]{$x$};
\draw[-latex](0,-1.5) -- (0,1.5) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick, domain=0.01:2] plot (\x,{sin(pow(\x,-1) r)});
\draw[black, thick, domain=-2:-0.01] plot (\x,{sin(pow(\x,-1) r)});
\end{tikzpicture}
\end{minipage}
无穷间断点与振荡间断点的左右极限都不存在的点都是第二类间断点。

View File

@@ -487,36 +487,40 @@ $\therefore \sqrt{2}$。
有一个边长为$x$的正方形,变化了$\Delta x$,其面积$\Delta S=(x+\Delta x)^2-x^2=2x\Delta x+(\Delta x)^2$
$\Delta x\to 0$时,将这个变化定义为$2x\cdot\Delta x+o(\Delta x)$,前项为线性主部,后面为误差。这个就是$S$的微分。
\begin{minipage}{0.45\linewidth}
$\Delta x\to 0$时,将这个变化定义为$2x\cdot\Delta x+o(\Delta x)$,前项为线性主部,后面为误差。这个就是$S$的微分。
增量$\Delta y=f(x_0+\Delta)-f(x_0)=A\Delta x+o(\Delta x)$,这个$A\Delta x$定义为$\textrm{d}y$,叫做$y$的微分。
增量$\Delta y=f(x_0+\Delta)-f(x_0)=A\Delta x+o(\Delta x)$,这个$A\Delta x$定义为$\textrm{d}y$,叫做$y$的微分。
$\therefore \textrm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\textrm{d}x$
$\therefore \textrm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\textrm{d}x$
由此,可导必可微,可微必可导。
\begin{tikzpicture}[scale=0.9]
\draw[-latex](-0.5,0) -- (4.5,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,4) node[above]{$y$};
\draw[black, thick, domain=-0.5:3] plot (\x,{pow(\x-1,2)/2+1}) node[above]{$y(x)$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, densely dashed](1.5,1.125) -- (1.5,0) node[below]{$x_0$};
\draw[black, densely dashed](1.5,1.125) -- (0,1.125) node[left]{$y_0$};
\draw[black, densely dashed](3,3) -- (3,0) node[below]{$x_0+\Delta x$};
\draw[black, densely dashed](3,3) -- (0,3) node[left]{$y_0+\Delta x$};
\draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\textrm{d}y\cdot x+b$};
\draw[<->, black](1.5,1.125) -- (3,1.125);
\draw[<->, black](4,1.125) -- (4,3);
\draw[<->, black](3.25,1.125) -- (3.25,1.875);
\draw[<->, black](3.25,3) -- (3.25,1.875);
\draw[black](3,3) -- (4.5,3);
\draw[black](3,1.125) -- (4.5,1.125);
\draw[black](3,1.875) -- (3.75,1.875);
\filldraw[black] (2.25,0.75) node{$\Delta x$};
\filldraw[black] (4.3,2) node{$\Delta y$};
\filldraw[black] (3.5,1.5) node{\scriptsize{$\textrm{d}y$}};
\filldraw[black] (3.5,2.5) node{\scriptsize{$o(\Delta x)$}};
\end{tikzpicture}
由此,可导必可微,可微必可导。
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
\begin{tikzpicture}[scale=0.9]
\draw[-latex](-0.5,0) -- (4.5,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,4) node[above]{$y$};
\draw[black, thick, domain=-0.5:3] plot (\x,{pow(\x-1,2)/2+1}) node[above]{$y(x)$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, densely dashed](1.5,1.125) -- (1.5,0) node[below]{$x_0$};
\draw[black, densely dashed](1.5,1.125) -- (0,1.125) node[left]{$y_0$};
\draw[black, densely dashed](3,3) -- (3,0) node[below]{$x_0+\Delta x$};
\draw[black, densely dashed](3,3) -- (0,3) node[left]{$y_0+\Delta x$};
\draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\textrm{d}y\cdot x+b$};
\draw[<->, black](1.5,1.125) -- (3,1.125);
\draw[<->, black](4,1.125) -- (4,3);
\draw[<->, black](3.25,1.125) -- (3.25,1.875);
\draw[<->, black](3.25,3) -- (3.25,1.875);
\draw[black](3,3) -- (4.5,3);
\draw[black](3,1.125) -- (4.5,1.125);
\draw[black](3,1.875) -- (3.75,1.875);
\filldraw[black] (2.25,0.75) node{$\Delta x$};
\filldraw[black] (4.3,2) node{$\Delta y$};
\filldraw[black] (3.5,1.5) node{\scriptsize{$\textrm{d}y$}};
\filldraw[black] (3.5,2.5) node{\scriptsize{$o(\Delta x)$}};
\end{tikzpicture}
\end{minipage} \medskip
所以可微就是用简单线性取代复杂线性,如图用直线取替代曲线。微分就是瞬时改变量,而导数就是瞬时改变速率。

View File

@@ -31,8 +31,6 @@
% 圆圈序号
\usepackage{mathtools}
% 有字的长箭头
\usepackage{yhmath}
% 弧线标识
\usetikzlibrary{decorations.pathreplacing}
% tikz的大括号
\usepackage{yhmath}
@@ -64,28 +62,32 @@ $\text{罗尔定理}\xrightleftharpoons[\text{特例:}f(a)=f(b)]{\text{泛化
罗尔定理\textcolor{violet}{\textbf{定义:}}
\begin{enumerate}
\item $f(x)$$[a,b]$上连续。
\item $f(x)$$(a,b)$内可导
\item $f(a)=f(b)$
\end{enumerate}
$\exists\,\xi\in(a,b)$,使得$f'(\xi)=0$
\begin{tikzpicture}[scale=0.7]
\draw[-latex](-0.5,0) -- (8,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0, 4) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick,domain=-0.5:8] plot (\x, {sin((\x-0.5) r)+2});
\filldraw[black] (6,3.5) node {$y=f(x)$};
\draw[densely dashed](0.5,2) -- (0.5+2*pi, 2);
\draw[densely dashed](0.5,2) -- (0.5, 0) node[below]{$a$};
\draw[densely dashed](0.5+2*pi,2) -- (0.5+2*pi, 0) node[below]{$b$};
\draw[densely dashed](0.5+pi/2,3) -- (0.5+pi/2, 0) node[below]{$\xi_1$};
\draw[densely dashed](0.5+pi/2*3,1) -- (0.5+pi/2*3, 0) node[below]{$\xi_2$};
\draw[black](pi/2-0.5,3) -- (1.5+pi/2,3);
\draw[black](pi/2*3-0.5,1) -- (1.5+pi/2*3,1);
\end{tikzpicture}
\begin{minipage}{0.45\linewidth}
\begin{enumerate}
\item $f(x)$$[a,b]$上连续
\item $f(x)$$(a,b)$内可导
\item $f(a)=f(b)$
\end{enumerate}
$\exists\,\xi\in(a,b)$,使得$f'(\xi)=0$
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
\begin{tikzpicture}[scale=0.7]
\draw[-latex](-0.5,0) -- (8,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0, 4) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick,domain=-0.5:8] plot (\x, {sin((\x-0.5) r)+2});
\filldraw[black] (6,3.5) node {$y=f(x)$};
\draw[densely dashed](0.5,2) -- (0.5+2*pi, 2);
\draw[densely dashed](0.5,2) -- (0.5, 0) node[below]{$a$};
\draw[densely dashed](0.5+2*pi,2) -- (0.5+2*pi, 0) node[below]{$b$};
\draw[densely dashed](0.5+pi/2,3) -- (0.5+pi/2, 0) node[below]{$\xi_1$};
\draw[densely dashed](0.5+pi/2*3,1) -- (0.5+pi/2*3, 0) node[below]{$\xi_2$};
\draw[black](pi/2-0.5,3) -- (1.5+pi/2,3);
\draw[black](pi/2*3-0.5,1) -- (1.5+pi/2*3,1);
\end{tikzpicture}
\end{minipage}
\subsection{拉格朗日中值定理}

View File

@@ -315,6 +315,10 @@ $\dfrac{P}{x^n}=\dfrac{A}{x}+\dfrac{B_0x+B_1}{x^2}+\cdots+\dfrac{N_0x^{n-1}+\cdo
\subsection{性质}
\textcolor{aqua}{\textbf{定理:}}定积分由积分上下限与函数关系确定,与积分变量无关。$\int_a^xf(x)\,\textrm{d}x=\int_a^xf(t)\,\textrm{d}t=\varPhi(x)$
\subsubsection{计算性质}
设函数$f(x)$在区间$[a,b]$上连续,则得到定积分基本计算性质:
\begin{enumerate}
@@ -329,8 +333,15 @@ $\dfrac{P}{x^n}=\dfrac{A}{x}+\dfrac{B_0x+B_1}{x^2}+\cdots+\dfrac{N_0x^{n-1}+\cdo
\item 已知$f(x)\in[m,M]$$[a,b]$上成立,则$m(b-a)\leqslant\int_a^bf(x)\,\textrm{d}x\leqslant M(a-b)$
\item 估值定理:当$M$$m$分别为$f(x)$$[a,b]$上的最大值和最小值,则$m(b-a)\leqslant\int_a^bf(x)\,\textrm{d}x\leqslant M(b-a)$
\item 积分中值定理:$\exists\,\xi\in[a,b]$,使得$\int_a^bf(x)\,\textrm{d}x=f(\xi)(b-a)$
\item 积分中值定理推广:设$f(x)\in[a,b]$$\exists\,\xi\in(a,b)$,使得$\int_a^bf(x)\,\textrm{d}x=f(\xi)(b-a)$
\end{enumerate}
证明第八条:已知$-\vert f(x)\vert\leqslant f(x)\leqslant\vert f(x)\vert$
即得到$-\int_a^b\vert f(x)\vert\,\textrm{d}x\leqslant\int_a^bf(x)\,\textrm{d}x\leqslant\int_a^b\vert f(x)\vert\,\textrm{d}x$
从而得证。
证明第十一条积分中值定理:
设函数$f(x)$在区间$[a,b]$上连续,因为闭区间上连续函数必然有最大最小值,所以设最大值为$M$,最小值为$m$$M\geqslant m$
@@ -349,7 +360,11 @@ $\dfrac{P}{x^n}=\dfrac{A}{x}+\dfrac{B_0x+B_1}{x^2}+\cdots+\dfrac{N_0x^{n-1}+\cdo
$F(x)$使用拉格朗日中值定理:$F(b)-F(a)=F'(\xi)(b-a)$,即$\int_a^bf(x)\,\textrm{d}x=f(\xi)(b-a)$,其中$\xi\in(a,b)\subset[a,b]$
定积分的存在性性质:
证明第十二条积分中值定理的推广。令$F(x)=\int_a^xf(t)\,\textrm{d}t$$F'(x)=f(x)$
$\int_a^bf(x)\,\textrm{d}x=F(b)-F(a)=F'(\xi)(b-a)=f(\xi)(b-a)$$a<\xi<b$)。
\subsubsection{存在性性质}
\begin{enumerate}
\item 设函数$f(x)$在区间$[a,b]$上连续,则$f(x)$在该区间上可积。
@@ -357,7 +372,7 @@ $\dfrac{P}{x^n}=\dfrac{A}{x}+\dfrac{B_0x+B_1}{x^2}+\cdots+\dfrac{N_0x^{n-1}+\cdo
\item 设函数$f(x)$在区间$[a,b]$上有界,且只有有限个间断点,则$f(x)$在该区间上可积。
\end{enumerate}
定积分与函数性质
\subsubsection{定积分与函数性质}
\begin{enumerate}
\item 若函数$f(x)$是周期函数且周期为$T$$\int_a^{a+T}f(x)\,\textrm{d}x=\int_0^Tf(x)\,\textrm{d}x$对于$\forall a$成立。
@@ -436,8 +451,6 @@ $\therefore\int_0^\pi x\sin^9x\,\textrm{d}x=\dfrac{\pi}{2}\int_0^\pi\sin^9x\,\te
$f(x)$$[a,b]$上连续,且$\Phi(x)=\int_a^xf(t)\,\textrm{d}t(x\in[a,b])$,这个函数就是积分上限函数或叫积分变限函数(如果$\int_x^af(t)\,\textrm{d}t$就是变下限积分或积分下限函数)。
积分值与积分变量无关,即$\int_a^xf(x)\,\textrm{d}x=\int_a^xf(t)\,\textrm{d}t$
对变限积分$\int_{a}^xf(t)\,\textrm{d}t$求导得到$f(t)$,再求导就得到$f'(t)$
定限积分是一个数值,而变限积分是一个函数。

View File

@@ -1,7 +1,10 @@
\documentclass[UTF8, 12pt]{ctexart}
% UTF8编码ctexart现实中文
\usepackage{color}
\usepackage{xcolor}
% 使用颜色
\definecolor{orange}{RGB}{255,127,0}
\definecolor{violet}{RGB}{192,0,255}
\definecolor{aqua}{RGB}{0,255,255}
\usepackage{geometry}
\setcounter{tocdepth}{4}
\setcounter{secnumdepth}{4}
@@ -22,6 +25,10 @@
% 数学公式
\usepackage[colorlinks,linkcolor=black,urlcolor=blue]{hyperref}
% 超链接
\usepackage{pifont}
% 圆圈序号
\usepackage{tikz}
% 绘图
\author{Didnelpsun}
\title{多元函数微分学}
\date{}
@@ -34,6 +41,223 @@
\newpage
\pagestyle{plain}
\setcounter{page}{1}
\section{}
\section{基本概念}
\subsection{平面与点}
\subsubsection{平面点集}
\textcolor{violet}{\textbf{定义:}}在平面上建立直角坐标系$xOy$,则平面上的点可用两个实数组的有序数组$(x,y)$表示,而二元函数$f(x,y)$的定义域是$(x,y)$为元素的几何,所以$f(x,y)$的定义域就是\textbf{平面上的点集}
\subsubsection{距离}
\textcolor{aqua}{\textbf{定理:}}平面上任意两点$M_1(x_1,y_1)$$M_2(x_2,y_2)$之间距离定义为$\rho(M_1,M_2)$\\$=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
$\rho(M_1,M_2)$满足:
\begin{itemize}
\item 非负性:$\rho(M_1,M_2)\geqslant0$
\item 对称性:$\rho(M_1,M_2)=\rho(M_2,M_1)$
\item 三角不等式:$\rho(M_1,M_3)\leqslant\rho(M_1,M_2)+\rho(M_2,M_3)$
\end{itemize}
\subsubsection{邻域}
$M_0$为平面上一点,$\delta>0$,则平面上以$M_0$为圆心,$\delta$为半径的圆的内部称为$M_0$\textbf{$\delta$领域},记为$U(M_0,\delta)$
若领域中去掉圆心$M_0$,称为$M_0$\textbf{$\delta$去心邻域},记为$\mathring{U}(M_0,\delta)$
\subsubsection{点的分类}
\textcolor{violet}{\textbf{定义:}}$M$为平面上一个点,若存在$\delta>0$,使得$U(M,\delta)\subset E$,则$M$为点集$E$\textbf{内点}
\textcolor{violet}{\textbf{定义:}}若存在$\delta>0$,使得$U(M,\delta)\cap E=\varnothing$,则$M$为点集$E$的的\textbf{外点}
\textcolor{violet}{\textbf{定义:}}若对任意$\delta>0$$U(M,\delta)$即有$E$内的点也有外的点,则$M$为点集$E$\textbf{边界点}
\textcolor{violet}{\textbf{定义:}}$E$所有边界点的集合称为$E$\textbf{边界},记为$\partial E$。对于任意一个点集$E$与其余集$E^C$有公共边界,即$\partial E=\partial E^C$
\subsubsection{集合}
\textcolor{violet}{\textbf{定义:}}$E$为一个平面点集,若存在常数$\delta>0$,使得$E\subset U(O,\delta)$,则$E$\textbf{有界集},否则为\textbf{无界集}
\textcolor{violet}{\textbf{定义:}}$E$中的每个点都是$E$的内点,则$E$\textbf{开集},若$E$的边界点都是$E$的点,则$E$\textbf{闭集}。若一个点集是开集,则其余集为闭集,若一个点集为闭集,则其余集为开集。
\textcolor{violet}{\textbf{定义:}}$E$中任意两点,都可用一条完全属于$E$的曲线将其两点连接,则$E$\textbf{(道路)连通集},连通的开集为\textbf{开区域},一个开区域和其边界点的并集为\textbf{闭区域},统称\textbf{区域}
\textcolor{violet}{\textbf{定义:}}$E$内任意一条\textbf{简单闭曲线}的内部还在$E$内,则$E$\textbf{单连通区域},否则为\textbf{多连通区域}
\subsubsection{聚点}
\textcolor{violet}{\textbf{定义:}}对一个平面点集$E$$M_0$为平面上一点,若对任意$\delta>0$,总有$\mathring{U}(M_0,\delta)\cap E\neq\varnothing$,即$M_0$的任意邻域中都含有异于$M_0$$E$中的点,则$M_0$$E$\textbf{聚点}
\textcolor{aqua}{\textbf{定理:}}非空开集的内点余边界点都是这个点集的聚点,闭区域的任意一点都是其聚点。
\textcolor{violet}{\textbf{定义:}}若存在$\delta>0$,使得$U(M_0,\delta)\cap E=\{M_0\}$,即如果$M_0$的某一邻域与点集$E$的交集是一个孤立的点$M_0$,则称$M_0$$E$\textbf{孤立点}。边界点要么是聚点要么是孤立点。
\subsection{极限}
对于一元函数的极限可用列举法,从两端逼近该点取极限,但是对于多元函数所处的邻域,逼近方向为无穷,所以不可能再通过取两个方向逼近的方式求极限。
从点集来看\textcolor{violet}{\textbf{定义:}}设二元函数$f(P)=f(x,y)$的定义域为$D$$P_0(x_0,y_0)$$D$聚点。若存在常数$A$,对于任意给定正数$\epsilon$,总存在正数$\delta$,使得当$P(x,y)\in D\cap\mathring{U}(P_0,\delta)$时,都有$\vert f(x,y)-A\vert<\epsilon$成立,则常数$A$$f(x,y)$$(x,y)\rightarrow(x_0,y_0)$时的极限,记为$\lim\limits_{(x,y)\to(x_0,y_0)}f(x,y)=A$$f(x,y)\to A((x,y)\to(x_0,y_0))$
$\because xy\neq0$排除$xy$轴:$\lim\limits_{(x,y)\to(0,0)}\dfrac{\sqrt{xy+1}-1}{xy}=\lim\limits_{(x,y)\to(0,0)}\dfrac{xy+1-1}{xy(\sqrt{xy+1}+1)}$\\$=\lim\limits_{(x,y)\to(0,0)}\dfrac{1}{\sqrt{xy+1}+1}=\dfrac{1}{2}$\medskip
从邻域来看\textcolor{violet}{\textbf{定义:}}若二元函数$f(x,y)$$(x_0,y_0)$的去心邻域内有定义,且$(x,y)$以任意方式趋向$(x_0,y_0)$时,$f(x,y)$均趋向于$A$,则$\lim\limits_{\substack{x\to x_0\\y\to y_0}}f(x,y)=A$
根据邻域的定义,由于函数$\lim\limits_{(x,y)\to(0,0)}\dfrac{\sqrt{xy+1}-1}{xy}$在坐标轴上无定义,则极限不存在。
此时两种定义就会有两种结论,所以为了避免这种定义不同的矛盾,就只会出现哪种定义下极限存在或都不存在的函数,如$\lim\limits_{\substack{x\to0\\y\to0}}(x^2+y^2)\sin\dfrac{1}{x^2+y^2}=0$
从现实角度来看,点集定义是更合理的,若要求一根弯曲铁丝在某点的导数,第二种定义无法求,所以不合理。而第二种定义是从一元极限定义直接升级过来,所以有一定局限性。
\subsection{连续}
\textcolor{violet}{\textbf{定义:}}$\lim\limits_{\substack{x\to x_0\\y\to y_0}}f(x,y)=f(x_0,y_0)$则称$f(x,y)$在点$(x_0,y_0)$处连续。
若不连续,则不讨论间断类型。
\subsection{偏导数}
当含有两个以及三个变量时,若求一个极限,则有多个变量同时趋向,所以多个变量同时在变。为了运算简单,就假定只有一个变量在变,其他变量固定,从而直接降低成一元变量,只对一个变量求导,从而就是偏导数。
\textcolor{violet}{\textbf{定义:}}设函数$z=f(x,y)$在点$(x_0,y_0)$的某邻域内有定义,若极限\\$\lim\limits_{\Delta x\to0}\dfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}$存在,则称此极限为函数$z=f(x,y)$在点$(x_0,y_0)$处对$x$\textbf{偏导数},记为$\dfrac{\partial z}{\partial x}\bigg|_{\substack{x=x_0\\y=y_0}}$$\dfrac{\partial f}{\partial x}\bigg|_{\substack{x=x_0\\y=y_0}}$$z'\bigg|_{\substack{x=x_0\\y=y_0}}$$f'_x(x_0,y_0)$\medskip
$f'_x(x_0,y_0)=\lim\limits_{\Delta x\to0}\dfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=\lim\limits_{x\to x_0}\dfrac{f(x,y_0)-f(x_0,y_0)}{x-x_0}$
$f'_y(x_0,y_0)=\lim\limits_{\Delta y\to0}\dfrac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}=\lim\limits_{y\to y_0}\dfrac{f(x_0,y)-f(x_0,y_0)}{y-y_0}$
\textcolor{violet}{\textbf{定义:}}若函数$z=f(x,y)$在区域$D$内的偏导数$f_x'(x,y)$$f_y'(x,y)$仍具有偏导数,则其偏导数为函数$z=f(x,y)$\textbf{二阶偏导数}。按照求导次序不同,有如下四个二阶偏导数。
$\dfrac{\partial}{\partial x}\left(\dfrac{\partial z}{\partial x}\right)=\dfrac{\partial^2z}{\partial x^2}=f''_{xx}(x,y)$$\dfrac{\partial}{\partial y}\left(\dfrac{\partial z}{\partial y}\right)=\dfrac{\partial^2z}{\partial y^2}=f''_{yy}(x,y)$
$\dfrac{\partial}{\partial y}\left(\dfrac{\partial z}{\partial x}\right)=\dfrac{\partial^2z}{\partial x\partial y}=f''_{xy}(x,y)$$\dfrac{\partial}{\partial x}\left(\dfrac{\partial z}{\partial y}\right)=\dfrac{\partial^2z}{\partial y\partial x}=f''_{yx}(x,y)$
其中$f''_{xy}(x,y)$$f''_{yx}(x,y)$\textbf{混合偏导数}。二阶以及以上的偏导数均为\textbf{高阶偏导数}
\subsection{全微分}
\textcolor{violet}{\textbf{定义:}}若函数$z=f(x,y)$在点$(x,y)$的全增量$\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$可表示为$\Delta z=A\Delta x+B\Delta y+o(\rho)$,其中$\rho=\sqrt{(\Delta x)^2+(\Delta y)^2}$$AB$不依赖$\Delta x$$\Delta y$而仅与$x,y$相关,则称函数$z=f(x,y)$在点$(x,y)$可微,而称$A\Delta x+B\Delta y$为函数$z=f(x,y)$在点$(x,y)$\textbf{全微分},记为$\textrm{d}z$
$\textrm{d}z=A\Delta x+B\Delta y=\dfrac{\partial z}{\partial x}\Delta x+\dfrac{\partial z}{\partial y}\Delta y=\dfrac{\partial z}{\partial x}\textrm{d}x+\dfrac{\partial z}{\partial y}\textrm{d}y$
判断可微的步骤:
\begin{enumerate}
\item 写出全增量$\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)$
\item 写出线性增量$A\Delta x+B\Delta y$$A=f_x'(x_0,y_0)$$B=f_y'(x_0,y_0)$
\item 写出极限$\lim\limits_{\substack{\Delta x\to0\\\Delta y\to0}}\dfrac{\Delta z-(A\Delta x+B\Delta y)}{\sqrt{(\Delta x)^2+(\Delta y)^2}}$若极限等于0$z=f(x,y)$在点$(x_0,y_0)$可微,否则不可微。
\end{enumerate}
% \textbf{例题:}已知函数$z=f(x,y)$的全微分$\textrm{d}z=2x\,\textrm{d}x+\sin y\,\textrm{d}y$且$f(1,0)=2$,求$f(x,y)$。
% 解:
\subsection{偏导数连续性}
$z=f(x,y)$,讨论其在某特殊点$(x_0,y_0)$处偏导数是否连续的步骤:
\begin{enumerate}
\item 用定义法求$f_x'(x_0,y_0)$$f_y'(x_0,y_0)$。(求某点偏导数)
\item 用公式法求$f_x'(x,y)$$f_y'(x,y)$。(求偏导函数)
\item 计算$\lim\limits_{\substack{x\to x_0\\y\to y_0}}f_x'(x,y)$$\lim\limits_{\substack{x\to x_0\\y\to y_0}}f_y'(x,y)$。(偏导函数求极限)
\item$\lim\limits_{\substack{x\to x_0\\y\to y_0}}f_x'(x,y)=f_x'(x_0,y_0)$$\lim\limits_{\substack{x\to x_0\\y\to y_0}}f_y'(x,y)=f_y'(x_0,y_0)$若成立则连续,否则不连续。
\end{enumerate}
\textbf{例题:}$z=f(x,y)=\left\{\begin{array}{ll}
(x^2+y^2)\sin\dfrac{1}{\sqrt{x^2+y^2}}, & x^2+y^2\neq0 \\
0, & x^2+y^2=0
\end{array}\right.$,则四个结论中正确的个数为()。
\ding{172}$f(x,y)$$(0,0)$处连续。\qquad\ding{173}$f'_x(0,0)$$f'_y(0,0)$存在。
\ding{174}$f_x'(x,y)$$f_y'(x,y)$$(0,0)$处连续。\qquad\ding{174}$f(x,y)$$(0,0)$可微。
$A.1$\qquad$B.2$\qquad$C.3$\qquad$D.4$
解:$\lim\limits_{\substack{x\to0\\y\to0}}(x^2+y^2)\sin\dfrac{1}{\sqrt{x^2+y^2}}=0=f(0,0)$。所以$A$正确。
$f_x'(0,0)=\lim\limits_{\Delta x\to0}\dfrac{f(0+\Delta x,0)-f(0,0)}{\Delta x}=\lim\limits_{\Delta x\to0}\dfrac{(\Delta x)^2\sin\dfrac{1}{\sqrt{(\Delta x)^2}}-0}{\Delta x}=$\\$\lim\limits_{\Delta x\to0}(\Delta x)\sin\dfrac{1}{\vert\Delta x\vert}=0$。同理$f'_y(0,0)=0$
判断连续性,首先计算偏导数值,之前计算过:$f_x'(0,0)=f_y'(0,0)=0$;然后求偏导函数$f_x'(x,y)=2x\sin\dfrac{1}{\sqrt{x^2+y^2}}+(x^2+y^2)\cos\dfrac{1}{\sqrt{x^2+y^2}}\left(-\dfrac{1}{2}\right)\dfrac{2x}{\sqrt{(x^2+y^2)^3}}$\\$=2x\sin\dfrac{1}{\sqrt{x^2+y^2}}-\dfrac{x}{\sqrt{x^2+y^2}}\cos\dfrac{1}{\sqrt{x^2+y^2}}$,同理得$f_y'(x,y)=2y\sin\dfrac{1}{\sqrt{x^2+y^2}}$\\$-\dfrac{y}{\sqrt{x^2+y^2}}\cos\dfrac{1}{\sqrt{x^2+y^2}}$;最后一步查看偏导函数值与偏导数值是否相等,$\because\lim\limits_{\substack{x\to0\\y\to0}}2x\sin\dfrac{1}{\sqrt{x^2+y^2}}=0$,且$\lim\limits_{\substack{x\to0\\y\to0}}\dfrac{x}{\sqrt{x^2+y^2}}\cos\dfrac{1}{\sqrt{x^2+y^2}}$震荡,所以总的来说极限值不存在,就不会等于偏导数值,同理可得函数的偏导数在该点不连续。
要求一个函数在某点可微,首先$\Delta z=f(0+\Delta x,0+\Delta y)-f(0,0)=[(\Delta x)^2+(\Delta y)^2]\sin\dfrac{1}{\sqrt{(\Delta x)^2+(\Delta y)^2}}$。然后$A\Delta x+B\Delta y=f_x'(0,0)\Delta x+f_y'(0,0)\Delta y=0$。最后求极限$\lim\limits_{\substack{\Delta x\to0\\\Delta y\to0}}\dfrac{\Delta z-(A\Delta x+B\Delta y)}{\sqrt{(\Delta x)^2+(\Delta y)^2}}=\lim\limits_{\substack{\Delta x\to0\\\Delta y\to0}}\sqrt{(\Delta x)^2+(\Delta y)^2}\sin\dfrac{1}{\sqrt{(\Delta x)^2+(\Delta y)^2}}$\\$=0$,所以在此点可微。
综上正确的结论有\ding{172}\ding{173}\ding{175}三个,所以选$C$
\section{多元函数微分法则}
\subsection{链式求导法则}
主要对显函数的微分。
多元函数链式求导法则与一元函数的求导法则类似。都是从因变量从中间变量走到自变量。一条路径是一个加项,多少条从因变量到所有自变量的路就有多少个加项。每条路上由不同的路段组成,若有$n$层中间变量,则有$n+1$路段,路段之间项是乘积形式,若变量只与一个变量有一条路,则是导数$\textrm{d}$,若一个变量到多个变量有多条路,则是偏导数$\partial$
\begin{minipage}{0.65\linewidth}
因变量$z$$x$一共有两条路,所以两个和项。每条路都有两端,所以和项中有两个乘项。$z$$uv$两个中间变量,所以是两个偏导$\dfrac{\partial z}{\partial u}$$\dfrac{\partial z}{\partial v}$$uv$都只有一条路直接连通$x$,所以都是导数$\dfrac{\textrm{d}u}{\textrm{d}x}$$\dfrac{\textrm{d}v}{\textrm{d}x}$。一条路的每个路段的项相乘:$\dfrac{\partial z}{\partial u}\dfrac{\textrm{d}u}{\textrm{d}x}$$\dfrac{\partial z}{\partial v}\dfrac{\textrm{d}v}{\textrm{d}x}$。最后将每条路段相加:$\dfrac{\textrm{d}z}{\textrm{d}x}=\dfrac{\partial z}{\partial v}\dfrac{\textrm{d}v}{\textrm{d}x}$
\end{minipage}
\hfill
\begin{minipage}{0.25\linewidth}
\begin{tikzpicture}[scale=1]
\filldraw[black] (-0.25,0) node{$z$};
\draw[black](0,0) -- (1,1) node[right]{$u$};
\draw[black](0,0) -- (1,-1) node[right]{$v$};
\draw[black](1.5,1) -- (2.5,0) node[right]{$x$};
\draw[black](1.5,-1) -- (2.5,0);
\end{tikzpicture}
\end{minipage} \medskip
\begin{minipage}{0.25\linewidth}
\begin{tikzpicture}[scale=1]
\filldraw[black] (-0.25,0) node{$z$};
\draw[black](0,0) -- (1,1) node[right]{$u$};
\draw[black](0,0) -- (1,0) node[right]{$v$};
\draw[black](0,0) -- (1,-1) node[right]{$w$};
\draw[black](1.5,1) -- (2.5,1) node[right]{$x$};
\draw[black](1.5,0) -- (2.5,1);
\draw[black](1.5,-1) -- (2.5,-1) node[right]{$y$};
\draw[black](1.5,1) -- (2.5,-1);
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.65\linewidth}
因为因变量$z$到自变量$x,y$有较多条路径,所以分开分析。
对于$x$,有$z-u-x$,所以这条路为$\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial x}$,还有一条$z-v-x$,由于$v$只与$x$连通,所以是导数,该路为$\dfrac{\partial z}{\partial v}\dfrac{\textrm{d}v}{\textrm{d}x}$,所以$\dfrac{\partial z}{\partial x}=\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial z}{\partial v}\dfrac{\textrm{d}v}{\textrm{d}x}$。、
同理对于$y$,有$z-u-y$$z-w-y$,且$u$有两条出路,$w$只有一条,所以$u$偏导,$v$导数,$\dfrac{\partial z}{\partial y}=\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial y}+\dfrac{\partial z}{\partial w}\dfrac{\textrm{d}w}{\textrm{d}y}$
\end{minipage} \medskip
无论$z$对谁求导也无论求了几阶到,求导过后的新函数仍具有与原函数完全相同的复合结构。
\textbf{例题:}$z=f(e^x\sin y,x^2+y^2)$,其中$f$具有二阶连续偏导数,求$\dfrac{\partial^2z}{\partial x\partial y}$
解:$\because\dfrac{\partial^2z}{\partial x\partial y}=\dfrac{\partial}{\partial y}\left(\dfrac{\partial z}{\partial x}\right)$$\therefore\dfrac{\partial z}{\partial x}=f_1'\cdot e^x\sin y+f_2'\cdot2x$
在求偏导时,将第一个中间变量记为$f_1$即之前的$u$,第二个中间变量记为$f_2$即之前的$v$。记$f$$u$求偏导为$f_1'$,对$v$求偏导为$f_2'$同理二阶导也如此,下标为求导顺序。
$\dfrac{\partial^2z}{\partial x\partial y}=\dfrac{\partial(f_1'\cdot e^x\sin y)}{\partial y}+\dfrac{\partial(f_2'\cdot2x)}{\partial y}$
其中$\dfrac{\partial(f_1'\cdot e^x\sin y)}{\partial y}=\dfrac{\partial f_1'}{\partial y}\cdot e^x\sin y+f_1'\cdot e^x\cos y$。所以难点就是$\dfrac{\partial f_1'}{\partial y}$
求导路径$f_1'-1-y$$f_1'-2-y$$=(f_{11}''e^x\cos y+f_{12}''2y)\cdot e^x\sin y+f_1'\cdot e^x\cos y$
\subsection{隐函数存在定理}
主要对隐函数的微分。
\section{多元函数极值最值}
\subsection{概念}
\subsection{无条件极值}
\subsubsection{隐函数}
\subsubsection{显函数}
\subsection{条件极值与拉格朗日乘数法}
\subsubsection{闭区域边界最值}
\subsubsection{闭区域上最值}
\end{document}