1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-06 20:14:34 +08:00

更新微分

This commit is contained in:
Didnelpsun
2021-09-20 23:22:37 +08:00
parent e1d87dd42e
commit cec41a289d
6 changed files with 54 additions and 3 deletions

View File

@@ -41,6 +41,55 @@
\newpage
\pagestyle{plain}
\setcounter{page}{1}
\section{基本概念}
\subsection{复合函数}
函数以复合函数形式$f(g(x,y))$出现,函数的变量是一个整体。
\subsubsection{链式法则}
若是给出相应的不等式可以通过链式法则求出对应的表达式。
\textbf{例题:}$u=u(\sqrt{x^2+y^2})$$r=\sqrt{x^2+y^2}>0$)有二阶连续的偏导数,且满足$\dfrac{\partial^2u}{\partial x^2}+\dfrac{\partial^2u}{\partial y^2}-\dfrac{1}{x}\dfrac{\partial u}{\partial x}+u=x^2+y^2$,则求$u(\sqrt{x^2+y^2})$
解:这个函数是复合函数$u=u(r)$$r=\sqrt{x^2+y^2}$而成。根据复合函数求导法则:
$\dfrac{\partial u}{\partial x}=\dfrac{\textrm{d}u}{\textrm{d}r}\dfrac{\partial r}{\partial x}=\dfrac{\textrm{d}u}{\textrm{d}r}\dfrac{x}{\sqrt{x^2+y^2}}=\dfrac{\textrm{d}u}{\textrm{d}r}\dfrac{x}{r}$
$\dfrac{\partial^2u}{\partial x^2}=\dfrac{\partial}{\partial x}\left(\dfrac{\partial u}{\partial x}\right)=\dfrac{\partial}{\partial x}\left(\dfrac{\textrm{d}u}{\textrm{d}r}\dfrac{x}{r}\right)=\dfrac{x}{r}\cdot\dfrac{\partial}{\partial x}\left(\dfrac{\textrm{d}u}{\textrm{d}r}\right)+\dfrac{\textrm{d}u}{\textrm{d}r}\cdot\dfrac{\partial}{\partial x}\left(\dfrac{x}{r}\right)=$
\subsubsection{特殊值反代}
若是给出的不等式后还给出对应的特殊值,可以直接代入然后反代求出函数,而不用链式法则。
\textbf{例题:}$z=e^x+y^2+f(x+y)$,且当$y=0$时,$z=x^3$,则求$\dfrac{\partial z}{\partial x}$
解:已知$y=0$时,$z=e^x+f(x)=x^3$$\therefore f(x)=x^3-e^x$$f(x+y)=(x+y)^3-e^{x+y}$$z=e^x+y^2+(x+y)^3-e^{x+y}$
$\therefore\dfrac{\partial z}{\partial x}=e^x+3(x+y)^2-e^{x+y}$
\section{二元函数}
函数以$f(u,v)$的形式来出现,需要分别对其求偏导。
\subsection{链式法则}
\textbf{例题:}$z=e^{xy}+f(x+y,xy)$$f(u,v)$有二阶连续偏导数,求$\dfrac{\partial^2z}{\partial x\partial y}$
解:令$x+y$$u$$xy$$v$$f(u,v)$$u$求导就是$f_1'$,对$v$求导就是$f_2'$,求$uv$依次求导就是$f_{12}''$,以此类推。
首先求一次偏导:$\dfrac{\partial z}{\partial x}=ye^{xy}+\dfrac{\partial f(u,v)}{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial f(u,v)}{\partial v}\dfrac{\partial v}{\partial x}=ye^{xy}+f_1'+f_2'y$
接着对$y$求偏导:$\dfrac{\partial^2z}{\partial x\partial y}=e^{xy}+xye^{xy}+\dfrac{\partial f_1'}{\partial y}+\dfrac{\partial f_2'y}{\partial y}$
$=e^{xy}+xye^{xy}+\dfrac{\partial f_1'}{\partial y}+\dfrac{\partial f_2'}{\partial y}y+f_2'\dfrac{\partial y}{\partial y}=e^{xy}+xye^{xy}+\dfrac{\partial f_1'}{\partial u}\dfrac{\partial u}{\partial y}+\dfrac{\partial f_1'}{\partial v}\dfrac{\partial v}{\partial y}+\dfrac{\partial f_2'}{\partial u}\dfrac{\partial u}{\partial y}y+\dfrac{\partial f_2'}{\partial v}\dfrac{\partial v}{\partial y}y+f_2'=e^{xy}+xye^{xy}+f_{11}''+f_{12}''x+f_{21}''y+f_{22}''xy+f_2'$\medskip
$f(u,v)$具有两阶连续偏导数,所以$f_{12}''=f_{21}''$
$=e^{xy}+xye^{xy}+f_{11}''+(x+y)f_{12}''+xyf_{22}''+f_2'$
\section{多元函数微分应用}
\subsection{空间曲线的切线与法平面}

View File

@@ -88,6 +88,8 @@ $\therefore\ln(u+\sqrt{1+u^2})=-\ln x+\ln C$$u+\sqrt{1+u^2}=\dfrac{C}{x}$。
\subsection{一阶线性方程}
形如$\dfrac{\textrm{d}y}{\textrm{d}x}+P(x)y=Q(x)$
\textbf{例题:}求微分方程$y'+1=e^{-y}\sin x$的通解。
解:已知对$e^{-y}\sin x$无法处理,所以必然需要对其转换,$e^yy'+e^y=\sin x$
@@ -98,6 +100,8 @@ $e^y=u=e^{-\int\textrm{d}x}(\int e^{\int\textrm{d}x}\sin x\,\textrm{d}x+C)=e^{-x
\subsection{伯努利方程}
形如$\dfrac{\textrm{d}y}{\textrm{d}x}+P(x)y=Q(x)y^n$
\textbf{例题:}$y\,\textrm{d}x=(1+x\ln y)x\,\textrm{d}y$$y>0$)的通解。
解:将导数放到一边:$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{y}{(1+x\ln y)x}$,这个算式无法处理。
@@ -132,8 +136,6 @@ $y'=C(1+x^2)$$\therefore y=C_2\left(x+\dfrac{x^3}{3}+x\right)+C$。
\subsection{常系数齐次线性微分方程}
\subsection{常系数非齐次线性微分方程}
先将常系数非齐次线性微分方程变为常系数齐次线性微分方程求解,然后加上非齐次方程的一个特解,就是非齐次方程的一个通解。

View File

@@ -124,7 +124,7 @@ $\therefore y=\pm e^{x^2}e^C=\pm C_1e^{x^2}=C_2e^{x^2}$。
也可能出现$\dfrac{\textrm{d}x}{\textrm{d}y}=\varphi\left(\dfrac{x}{y}\right)$
$u=\dfrac{y}{x}$,则$y=ux$变为$\dfrac{\textrm{d}y}{\textrm{d}x}=u+x\dfrac{\textrm{d}u}{\textrm{d}x}$,从而原方程变为$x\dfrac{\textrm{d}u}{\textrm{d}x}+u=\varphi(u)$,即$\dfrac{\textrm{d}u}{\varphi(u)-u}=\dfrac{\textrm{d}x}{x}$
$u=\dfrac{y}{x}$,则$y=ux$变为$\dfrac{\textrm{d}y}{\textrm{d}x}=u+x\dfrac{\textrm{d}u}{\textrm{d}x}$$u$不是一个常数而是一个关于$x$的函数,所以$\dfrac{\textrm{d}y}{\textrm{d}x}\neq u$,从而原方程变为$x\dfrac{\textrm{d}u}{\textrm{d}x}+u=\varphi(u)$,即$\dfrac{\textrm{d}u}{\varphi(u)-u}=\dfrac{\textrm{d}x}{x}$
$(xy-y^2)\textrm{d}x-(x^2-2xy)\textrm{d}y=0$可以化为$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{xy-y^2}{x^2-2xy}$,即$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{\dfrac{y}{x}-\left(\dfrac{y}{x}\right)^2}{1-2\left(\dfrac{y}{x}\right)}$