1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-07 04:23:42 +08:00
This commit is contained in:
Didnelpsun
2021-11-09 23:06:48 +08:00
parent 71353bef98
commit cfefef115f
2 changed files with 19 additions and 0 deletions

View File

@@ -141,4 +141,23 @@ $\int_0^\pi\cos^2x\,\textrm{d}x\int_0^{\sin x}\textrm{d}y=\int_0^\pi\cos^2x\sin
所以$=2\int_0^{\frac{\pi}{4}}\textrm{d}\theta\int_0^{\frac{1}{\cos\theta}}\textrm{d}r=2\int_0^{\frac{\pi}{4}}\dfrac{\textrm{d}\theta}{\cos\theta}=2\ln(\sec\theta+\tan\theta)|_0^{\frac{\pi}{4}}=2\ln(1+\sqrt{2})$
\subsection{二重积分求导}
即对二重积分求导,需要将二重积分化为一重积分。
\subsection{二重积分等式}
\textbf{例题:}$f(x,y)$为连续函数,且$f(x,y)=\dfrac{1}{\pi}\sqrt{x^2+y^2}\iint\limits_{x^2+y^2\leqslant1}f(x,y)\,\textrm{d}\sigma+y^2$,求$f(x,y)$
解:$\because f(x,y)$为连续函数,所以其在区间上可积且是一个常数。
$\iint\limits_{x^2+y^2\leqslant1}f(x,y)\,\textrm{d}\sigma=A$。对$f(x,y)=\dfrac{A}{\pi}\sqrt{x^2+y^2}+y^2$两边积分:
$A=\dfrac{A}{\pi}\iint\limits_{x^2+y^2\leqslant1}\sqrt{x^2+y^2}\,\textrm{d}\sigma+\iint\limits_{x^2+y^2\leqslant1}y^2\,\textrm{d}\sigma$,令$x=r\cos\theta$$y=r\sin\theta$
$A=\dfrac{A}{\pi}\int_0^{2\pi}\textrm{d}\theta\int_0^1r^2\,\textrm{d}r+\int_0^{2\pi}\sin^2\theta\textrm{d}\theta\int_0^1r^3\,\textrm{d}r=\dfrac{2A}{3}+\dfrac{\pi}{4}$$A=\dfrac{3}{4}\pi$
则代入原式$f(x,y)=\dfrac{3}{4}\sqrt{x^2+y^2}+y^2$
\end{document}