Files
notes_estom/Python/pandas/user_guide/reshaping.md
2020-09-26 22:03:11 +08:00

1521 lines
50 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Reshaping and pivot tables
## Reshaping by pivoting DataFrame objects
![reshaping_pivot](https://static.pypandas.cn/public/static/images/reshaping_pivot.png)
Data is often stored in so-called “stacked” or “record” format:
``` python
In [1]: df
Out[1]:
date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
3 2000-01-03 B -1.135632
4 2000-01-04 B 1.212112
5 2000-01-05 B -0.173215
6 2000-01-03 C 0.119209
7 2000-01-04 C -1.044236
8 2000-01-05 C -0.861849
9 2000-01-03 D -2.104569
10 2000-01-04 D -0.494929
11 2000-01-05 D 1.071804
```
For the curious here is how the above ``DataFrame`` was created:
``` python
import pandas.util.testing as tm
tm.N = 3
def unpivot(frame):
N, K = frame.shape
data = {'value': frame.to_numpy().ravel('F'),
'variable': np.asarray(frame.columns).repeat(N),
'date': np.tile(np.asarray(frame.index), K)}
return pd.DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())
```
To select out everything for variable ``A`` we could do:
``` python
In [2]: df[df['variable'] == 'A']
Out[2]:
date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
```
But suppose we wish to do time series operations with the variables. A better
representation would be where the ``columns`` are the unique variables and an
``index`` of dates identifies individual observations. To reshape the data into
this form, we use the [``DataFrame.pivot()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html#pandas.DataFrame.pivot) method (also implemented as a
top level function [``pivot()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot.html#pandas.pivot)):
``` python
In [3]: df.pivot(index='date', columns='variable', values='value')
Out[3]:
variable A B C D
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804
```
If the ``values`` argument is omitted, and the input ``DataFrame`` has more than
one column of values which are not used as column or index inputs to ``pivot``,
then the resulting “pivoted” ``DataFrame`` will have [hierarchical columns](advanced.html#advanced-hierarchical) whose topmost level indicates the respective value
column:
``` python
In [4]: df['value2'] = df['value'] * 2
In [5]: pivoted = df.pivot(index='date', columns='variable')
In [6]: pivoted
Out[6]:
value value2
variable A B C D A B C D
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265 0.238417 -4.209138
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224 -2.088472 -0.989859
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429 -1.723698 2.143608
```
You can then select subsets from the pivoted ``DataFrame``:
``` python
In [7]: pivoted['value2']
Out[7]:
variable A B C D
date
2000-01-03 0.938225 -2.271265 0.238417 -4.209138
2000-01-04 -0.565727 2.424224 -2.088472 -0.989859
2000-01-05 -3.018117 -0.346429 -1.723698 2.143608
```
Note that this returns a view on the underlying data in the case where the data
are homogeneously-typed.
::: tip Note
[``pivot()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot.html#pandas.pivot) will error with a ``ValueError: Index contains duplicate
entries, cannot reshape`` if the index/column pair is not unique. In this
case, consider using [``pivot_table()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html#pandas.pivot_table) which is a generalization
of pivot that can handle duplicate values for one index/column pair.
:::
## Reshaping by stacking and unstacking
![reshaping_stack](https://static.pypandas.cn/public/static/images/reshaping_stack.png)
Closely related to the [``pivot()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html#pandas.DataFrame.pivot) method are the related
[``stack()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.stack.html#pandas.DataFrame.stack) and [``unstack()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.unstack.html#pandas.DataFrame.unstack) methods available on
``Series`` and ``DataFrame``. These methods are designed to work together with
``MultiIndex`` objects (see the section on [hierarchical indexing](advanced.html#advanced-hierarchical)). Here are essentially what these methods do:
- ``stack``: “pivot” a level of the (possibly hierarchical) column labels,
returning a ``DataFrame`` with an index with a new inner-most level of row
labels.
- ``unstack``: (inverse operation of ``stack``) “pivot” a level of the
(possibly hierarchical) row index to the column axis, producing a reshaped
``DataFrame`` with a new inner-most level of column labels.
![reshaping_unstack](https://static.pypandas.cn/public/static/images/reshaping_unstack.png)
The clearest way to explain is by example. Lets take a prior example data set
from the hierarchical indexing section:
``` python
In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
...: 'foo', 'foo', 'qux', 'qux'],
...: ['one', 'two', 'one', 'two',
...: 'one', 'two', 'one', 'two']]))
...:
In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
In [11]: df2 = df[:4]
In [12]: df2
Out[12]:
A B
first second
bar one 0.721555 -0.706771
two -1.039575 0.271860
baz one -0.424972 0.567020
two 0.276232 -1.087401
```
The ``stack`` function “compresses” a level in the ``DataFrame``s columns to
produce either:
- A ``Series``, in the case of a simple column Index.
- A ``DataFrame``, in the case of a ``MultiIndex`` in the columns.
If the columns have a ``MultiIndex``, you can choose which level to stack. The
stacked level becomes the new lowest level in a ``MultiIndex`` on the columns:
``` python
In [13]: stacked = df2.stack()
In [14]: stacked
Out[14]:
first second
bar one A 0.721555
B -0.706771
two A -1.039575
B 0.271860
baz one A -0.424972
B 0.567020
two A 0.276232
B -1.087401
dtype: float64
```
With a “stacked” ``DataFrame`` or ``Series`` (having a ``MultiIndex`` as the
``index``), the inverse operation of ``stack`` is ``unstack``, which by default
unstacks the **last level**:
``` python
In [15]: stacked.unstack()
Out[15]:
A B
first second
bar one 0.721555 -0.706771
two -1.039575 0.271860
baz one -0.424972 0.567020
two 0.276232 -1.087401
In [16]: stacked.unstack(1)
Out[16]:
second one two
first
bar A 0.721555 -1.039575
B -0.706771 0.271860
baz A -0.424972 0.276232
B 0.567020 -1.087401
In [17]: stacked.unstack(0)
Out[17]:
first bar baz
second
one A 0.721555 -0.424972
B -0.706771 0.567020
two A -1.039575 0.276232
B 0.271860 -1.087401
```
![reshaping_unstack_1](https://static.pypandas.cn/public/static/images/reshaping_unstack_1.png)
If the indexes have names, you can use the level names instead of specifying
the level numbers:
``` python
In [18]: stacked.unstack('second')
Out[18]:
second one two
first
bar A 0.721555 -1.039575
B -0.706771 0.271860
baz A -0.424972 0.276232
B 0.567020 -1.087401
```
![reshaping_unstack_0](https://static.pypandas.cn/public/static/images/reshaping_unstack_0.png)
Notice that the ``stack`` and ``unstack`` methods implicitly sort the index
levels involved. Hence a call to ``stack`` and then ``unstack``, or vice versa,
will result in a **sorted** copy of the original ``DataFrame`` or ``Series``:
``` python
In [19]: index = pd.MultiIndex.from_product([[2, 1], ['a', 'b']])
In [20]: df = pd.DataFrame(np.random.randn(4), index=index, columns=['A'])
In [21]: df
Out[21]:
A
2 a -0.370647
b -1.157892
1 a -1.344312
b 0.844885
In [22]: all(df.unstack().stack() == df.sort_index())
Out[22]: True
```
The above code will raise a ``TypeError`` if the call to ``sort_index`` is
removed.
### Multiple levels
You may also stack or unstack more than one level at a time by passing a list
of levels, in which case the end result is as if each level in the list were
processed individually.
``` python
In [23]: columns = pd.MultiIndex.from_tuples([
....: ('A', 'cat', 'long'), ('B', 'cat', 'long'),
....: ('A', 'dog', 'short'), ('B', 'dog', 'short')],
....: names=['exp', 'animal', 'hair_length']
....: )
....:
In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)
In [25]: df
Out[25]:
exp A B A B
animal cat cat dog dog
hair_length long long short short
0 1.075770 -0.109050 1.643563 -1.469388
1 0.357021 -0.674600 -1.776904 -0.968914
2 -1.294524 0.413738 0.276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061
In [26]: df.stack(level=['animal', 'hair_length'])
Out[26]:
exp A B
animal hair_length
0 cat long 1.075770 -0.109050
dog short 1.643563 -1.469388
1 cat long 0.357021 -0.674600
dog short -1.776904 -0.968914
2 cat long -1.294524 0.413738
dog short 0.276662 -0.472035
3 cat long -0.013960 -0.362543
dog short -0.006154 -0.923061
```
The list of levels can contain either level names or level numbers (but
not a mixture of the two).
``` python
# df.stack(level=['animal', 'hair_length'])
# from above is equivalent to:
In [27]: df.stack(level=[1, 2])
Out[27]:
exp A B
animal hair_length
0 cat long 1.075770 -0.109050
dog short 1.643563 -1.469388
1 cat long 0.357021 -0.674600
dog short -1.776904 -0.968914
2 cat long -1.294524 0.413738
dog short 0.276662 -0.472035
3 cat long -0.013960 -0.362543
dog short -0.006154 -0.923061
```
### Missing data
These functions are intelligent about handling missing data and do not expect
each subgroup within the hierarchical index to have the same set of labels.
They also can handle the index being unsorted (but you can make it sorted by
calling ``sort_index``, of course). Here is a more complex example:
``` python
In [28]: columns = pd.MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
....: ('B', 'cat'), ('A', 'dog')],
....: names=['exp', 'animal'])
....:
In [29]: index = pd.MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'),
....: ('one', 'two')],
....: names=['first', 'second'])
....:
In [30]: df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)
In [31]: df2 = df.iloc[[0, 1, 2, 4, 5, 7]]
In [32]: df2
Out[32]:
exp A B A
animal cat dog cat dog
first second
bar one 0.895717 0.805244 -1.206412 2.565646
two 1.431256 1.340309 -1.170299 -0.226169
baz one 0.410835 0.813850 0.132003 -0.827317
foo one -1.413681 1.607920 1.024180 0.569605
two 0.875906 -2.211372 0.974466 -2.006747
qux two -1.226825 0.769804 -1.281247 -0.727707
```
As mentioned above, ``stack`` can be called with a ``level`` argument to select
which level in the columns to stack:
``` python
In [33]: df2.stack('exp')
Out[33]:
animal cat dog
first second exp
bar one A 0.895717 2.565646
B -1.206412 0.805244
two A 1.431256 -0.226169
B -1.170299 1.340309
baz one A 0.410835 -0.827317
B 0.132003 0.813850
foo one A -1.413681 0.569605
B 1.024180 1.607920
two A 0.875906 -2.006747
B 0.974466 -2.211372
qux two A -1.226825 -0.727707
B -1.281247 0.769804
In [34]: df2.stack('animal')
Out[34]:
exp A B
first second animal
bar one cat 0.895717 -1.206412
dog 2.565646 0.805244
two cat 1.431256 -1.170299
dog -0.226169 1.340309
baz one cat 0.410835 0.132003
dog -0.827317 0.813850
foo one cat -1.413681 1.024180
dog 0.569605 1.607920
two cat 0.875906 0.974466
dog -2.006747 -2.211372
qux two cat -1.226825 -1.281247
dog -0.727707 0.769804
```
Unstacking can result in missing values if subgroups do not have the same
set of labels. By default, missing values will be replaced with the default
fill value for that data type, ``NaN`` for float, ``NaT`` for datetimelike,
etc. For integer types, by default data will converted to float and missing
values will be set to ``NaN``.
``` python
In [35]: df3 = df.iloc[[0, 1, 4, 7], [1, 2]]
In [36]: df3
Out[36]:
exp B
animal dog cat
first second
bar one 0.805244 -1.206412
two 1.340309 -1.170299
foo one 1.607920 1.024180
qux two 0.769804 -1.281247
In [37]: df3.unstack()
Out[37]:
exp B
animal dog cat
second one two one two
first
bar 0.805244 1.340309 -1.206412 -1.170299
foo 1.607920 NaN 1.024180 NaN
qux NaN 0.769804 NaN -1.281247
```
*New in version 0.18.0.*
Alternatively, unstack takes an optional ``fill_value`` argument, for specifying
the value of missing data.
``` python
In [38]: df3.unstack(fill_value=-1e9)
Out[38]:
exp B
animal dog cat
second one two one two
first
bar 8.052440e-01 1.340309e+00 -1.206412e+00 -1.170299e+00
foo 1.607920e+00 -1.000000e+09 1.024180e+00 -1.000000e+09
qux -1.000000e+09 7.698036e-01 -1.000000e+09 -1.281247e+00
```
### With a MultiIndex
Unstacking when the columns are a ``MultiIndex`` is also careful about doing
the right thing:
``` python
In [39]: df[:3].unstack(0)
Out[39]:
exp A B A
animal cat dog cat dog
first bar baz bar baz bar baz bar baz
second
one 0.895717 0.410835 0.805244 0.81385 -1.206412 0.132003 2.565646 -0.827317
two 1.431256 NaN 1.340309 NaN -1.170299 NaN -0.226169 NaN
In [40]: df2.unstack(1)
Out[40]:
exp A B A
animal cat dog cat dog
second one two one two one two one two
first
bar 0.895717 1.431256 0.805244 1.340309 -1.206412 -1.170299 2.565646 -0.226169
baz 0.410835 NaN 0.813850 NaN 0.132003 NaN -0.827317 NaN
foo -1.413681 0.875906 1.607920 -2.211372 1.024180 0.974466 0.569605 -2.006747
qux NaN -1.226825 NaN 0.769804 NaN -1.281247 NaN -0.727707
```
## Reshaping by Melt
![reshaping_melt](https://static.pypandas.cn/public/static/images/reshaping_melt.png)
The top-level [``melt()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html#pandas.melt) function and the corresponding [``DataFrame.melt()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.melt.html#pandas.DataFrame.melt)
are useful to massage a ``DataFrame`` into a format where one or more columns
are *identifier variables*, while all other columns, considered *measured
variables*, are “unpivoted” to the row axis, leaving just two non-identifier
columns, “variable” and “value”. The names of those columns can be customized
by supplying the ``var_name`` and ``value_name`` parameters.
For instance,
``` python
In [41]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
....: 'last': ['Doe', 'Bo'],
....: 'height': [5.5, 6.0],
....: 'weight': [130, 150]})
....:
In [42]: cheese
Out[42]:
first last height weight
0 John Doe 5.5 130
1 Mary Bo 6.0 150
In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]:
first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]:
first last quantity value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
```
Another way to transform is to use the [``wide_to_long()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.wide_to_long.html#pandas.wide_to_long) panel data
convenience function. It is less flexible than [``melt()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html#pandas.melt), but more
user-friendly.
``` python
In [45]: dft = pd.DataFrame({"A1970": {0: "a", 1: "b", 2: "c"},
....: "A1980": {0: "d", 1: "e", 2: "f"},
....: "B1970": {0: 2.5, 1: 1.2, 2: .7},
....: "B1980": {0: 3.2, 1: 1.3, 2: .1},
....: "X": dict(zip(range(3), np.random.randn(3)))
....: })
....:
In [46]: dft["id"] = dft.index
In [47]: dft
Out[47]:
A1970 A1980 B1970 B1980 X id
0 a d 2.5 3.2 -0.121306 0
1 b e 1.2 1.3 -0.097883 1
2 c f 0.7 0.1 0.695775 2
In [48]: pd.wide_to_long(dft, ["A", "B"], i="id", j="year")
Out[48]:
X A B
id year
0 1970 -0.121306 a 2.5
1 1970 -0.097883 b 1.2
2 1970 0.695775 c 0.7
0 1980 -0.121306 d 3.2
1 1980 -0.097883 e 1.3
2 1980 0.695775 f 0.1
```
## Combining with stats and GroupBy
It should be no shock that combining ``pivot`` / ``stack`` / ``unstack`` with
GroupBy and the basic Series and DataFrame statistical functions can produce
some very expressive and fast data manipulations.
``` python
In [49]: df
Out[49]:
exp A B A
animal cat dog cat dog
first second
bar one 0.895717 0.805244 -1.206412 2.565646
two 1.431256 1.340309 -1.170299 -0.226169
baz one 0.410835 0.813850 0.132003 -0.827317
two -0.076467 -1.187678 1.130127 -1.436737
foo one -1.413681 1.607920 1.024180 0.569605
two 0.875906 -2.211372 0.974466 -2.006747
qux one -0.410001 -0.078638 0.545952 -1.219217
two -1.226825 0.769804 -1.281247 -0.727707
In [50]: df.stack().mean(1).unstack()
Out[50]:
animal cat dog
first second
bar one -0.155347 1.685445
two 0.130479 0.557070
baz one 0.271419 -0.006733
two 0.526830 -1.312207
foo one -0.194750 1.088763
two 0.925186 -2.109060
qux one 0.067976 -0.648927
two -1.254036 0.021048
# same result, another way
In [51]: df.groupby(level=1, axis=1).mean()
Out[51]:
animal cat dog
first second
bar one -0.155347 1.685445
two 0.130479 0.557070
baz one 0.271419 -0.006733
two 0.526830 -1.312207
foo one -0.194750 1.088763
two 0.925186 -2.109060
qux one 0.067976 -0.648927
two -1.254036 0.021048
In [52]: df.stack().groupby(level=1).mean()
Out[52]:
exp A B
second
one 0.071448 0.455513
two -0.424186 -0.204486
In [53]: df.mean().unstack(0)
Out[53]:
exp A B
animal
cat 0.060843 0.018596
dog -0.413580 0.232430
```
## Pivot tables
While [``pivot()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html#pandas.DataFrame.pivot) provides general purpose pivoting with various
data types (strings, numerics, etc.), pandas also provides [``pivot_table()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html#pandas.pivot_table)
for pivoting with aggregation of numeric data.
The function [``pivot_table()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html#pandas.pivot_table) can be used to create spreadsheet-style
pivot tables. See the [cookbook](cookbook.html#cookbook-pivot) for some advanced
strategies.
It takes a number of arguments:
- ``data``: a DataFrame object.
- ``values``: a column or a list of columns to aggregate.
- ``index``: a column, Grouper, array which has the same length as data, or list of them.
Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- ``columns``: a column, Grouper, array which has the same length as data, or list of them.
Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- ``aggfunc``: function to use for aggregation, defaulting to ``numpy.mean``.
Consider a data set like this:
``` python
In [54]: import datetime
In [55]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
....: 'B': ['A', 'B', 'C'] * 8,
....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
....: 'D': np.random.randn(24),
....: 'E': np.random.randn(24),
....: 'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)]
....: + [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
....:
In [56]: df
Out[56]:
A B C D E F
0 one A foo 0.341734 -0.317441 2013-01-01
1 one B foo 0.959726 -1.236269 2013-02-01
2 two C foo -1.110336 0.896171 2013-03-01
3 three A bar -0.619976 -0.487602 2013-04-01
4 one B bar 0.149748 -0.082240 2013-05-01
.. ... .. ... ... ... ...
19 three B foo 0.690579 -2.213588 2013-08-15
20 one C foo 0.995761 1.063327 2013-09-15
21 one A bar 2.396780 1.266143 2013-10-15
22 two B bar 0.014871 0.299368 2013-11-15
23 three C bar 3.357427 -0.863838 2013-12-15
[24 rows x 6 columns]
```
We can produce pivot tables from this data very easily:
``` python
In [57]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[57]:
C bar foo
A B
one A 1.120915 -0.514058
B -0.338421 0.002759
C -0.538846 0.699535
three A -1.181568 NaN
B NaN 0.433512
C 0.588783 NaN
two A NaN 1.000985
B 0.158248 NaN
C NaN 0.176180
In [58]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)
Out[58]:
A one three two
C bar foo bar foo bar foo
B
A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971
B -0.676843 0.005518 NaN 0.867024 0.316495 NaN
C -1.077692 1.399070 1.177566 NaN NaN 0.352360
In [59]: pd.pivot_table(df, values=['D', 'E'], index=['B'], columns=['A', 'C'],
....: aggfunc=np.sum)
....:
Out[59]:
D E
A one three two one three two
C bar foo bar foo bar foo bar foo bar foo bar foo
B
A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971 2.786113 -0.043211 1.922577 NaN NaN 0.128491
B -0.676843 0.005518 NaN 0.867024 0.316495 NaN 1.368280 -1.103384 NaN -2.128743 -0.194294 NaN
C -1.077692 1.399070 1.177566 NaN NaN 0.352360 -1.976883 1.495717 -0.263660 NaN NaN 0.872482
```
The result object is a ``DataFrame`` having potentially hierarchical indexes on the
rows and columns. If the ``values`` column name is not given, the pivot table
will include all of the data that can be aggregated in an additional level of
hierarchy in the columns:
``` python
In [60]: pd.pivot_table(df, index=['A', 'B'], columns=['C'])
Out[60]:
D E
C bar foo bar foo
A B
one A 1.120915 -0.514058 1.393057 -0.021605
B -0.338421 0.002759 0.684140 -0.551692
C -0.538846 0.699535 -0.988442 0.747859
three A -1.181568 NaN 0.961289 NaN
B NaN 0.433512 NaN -1.064372
C 0.588783 NaN -0.131830 NaN
two A NaN 1.000985 NaN 0.064245
B 0.158248 NaN -0.097147 NaN
C NaN 0.176180 NaN 0.436241
```
Also, you can use ``Grouper`` for ``index`` and ``columns`` keywords. For detail of ``Grouper``, see [Grouping with a Grouper specification](groupby.html#groupby-specify).
``` python
In [61]: pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'),
....: columns='C')
....:
Out[61]:
C bar foo
F
2013-01-31 NaN -0.514058
2013-02-28 NaN 0.002759
2013-03-31 NaN 0.176180
2013-04-30 -1.181568 NaN
2013-05-31 -0.338421 NaN
2013-06-30 -0.538846 NaN
2013-07-31 NaN 1.000985
2013-08-31 NaN 0.433512
2013-09-30 NaN 0.699535
2013-10-31 1.120915 NaN
2013-11-30 0.158248 NaN
2013-12-31 0.588783 NaN
```
You can render a nice output of the table omitting the missing values by
calling ``to_string`` if you wish:
``` python
In [62]: table = pd.pivot_table(df, index=['A', 'B'], columns=['C'])
In [63]: print(table.to_string(na_rep=''))
D E
C bar foo bar foo
A B
one A 1.120915 -0.514058 1.393057 -0.021605
B -0.338421 0.002759 0.684140 -0.551692
C -0.538846 0.699535 -0.988442 0.747859
three A -1.181568 0.961289
B 0.433512 -1.064372
C 0.588783 -0.131830
two A 1.000985 0.064245
B 0.158248 -0.097147
C 0.176180 0.436241
```
Note that ``pivot_table`` is also available as an instance method on DataFrame,
### Adding margins
If you pass ``margins=True`` to ``pivot_table``, special ``All`` columns and
rows will be added with partial group aggregates across the categories on the
rows and columns:
``` python
In [64]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
Out[64]:
D E
C bar foo All bar foo All
A B
one A 1.804346 1.210272 1.569879 0.179483 0.418374 0.858005
B 0.690376 1.353355 0.898998 1.083825 0.968138 1.101401
C 0.273641 0.418926 0.771139 1.689271 0.446140 1.422136
three A 0.794212 NaN 0.794212 2.049040 NaN 2.049040
B NaN 0.363548 0.363548 NaN 1.625237 1.625237
C 3.915454 NaN 3.915454 1.035215 NaN 1.035215
two A NaN 0.442998 0.442998 NaN 0.447104 0.447104
B 0.202765 NaN 0.202765 0.560757 NaN 0.560757
C NaN 1.819408 1.819408 NaN 0.650439 0.650439
All 1.556686 0.952552 1.246608 1.250924 0.899904 1.059389
```
## Cross tabulations
Use [``crosstab()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.crosstab.html#pandas.crosstab) to compute a cross-tabulation of two (or more)
factors. By default ``crosstab`` computes a frequency table of the factors
unless an array of values and an aggregation function are passed.
It takes a number of arguments
- ``index``: array-like, values to group by in the rows.
- ``columns``: array-like, values to group by in the columns.
- ``values``: array-like, optional, array of values to aggregate according to
the factors.
- ``aggfunc``: function, optional, If no values array is passed, computes a
frequency table.
- ``rownames``: sequence, default ``None``, must match number of row arrays passed.
- ``colnames``: sequence, default ``None``, if passed, must match number of column
arrays passed.
- ``margins``: boolean, default ``False``, Add row/column margins (subtotals)
- ``normalize``: boolean, {all, index, columns}, or {0,1}, default ``False``.
Normalize by dividing all values by the sum of values.
Any ``Series`` passed will have their name attributes used unless row or column
names for the cross-tabulation are specified
For example:
``` python
In [65]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
In [66]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
In [67]: b = np.array([one, one, two, one, two, one], dtype=object)
In [68]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
In [69]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
Out[69]:
b one two
c dull shiny dull shiny
a
bar 1 0 0 1
foo 2 1 1 0
```
If ``crosstab`` receives only two Series, it will provide a frequency table.
``` python
In [70]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4],
....: 'C': [1, 1, np.nan, 1, 1]})
....:
In [71]: df
Out[71]:
A B C
0 1 3 1.0
1 2 3 1.0
2 2 4 NaN
3 2 4 1.0
4 2 4 1.0
In [72]: pd.crosstab(df.A, df.B)
Out[72]:
B 3 4
A
1 1 0
2 1 3
```
Any input passed containing ``Categorical`` data will have **all** of its
categories included in the cross-tabulation, even if the actual data does
not contain any instances of a particular category.
``` python
In [73]: foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
In [74]: bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
In [75]: pd.crosstab(foo, bar)
Out[75]:
col_0 d e
row_0
a 1 0
b 0 1
```
### Normalization
*New in version 0.18.1.*
Frequency tables can also be normalized to show percentages rather than counts
using the ``normalize`` argument:
``` python
In [76]: pd.crosstab(df.A, df.B, normalize=True)
Out[76]:
B 3 4
A
1 0.2 0.0
2 0.2 0.6
```
``normalize`` can also normalize values within each row or within each column:
``` python
In [77]: pd.crosstab(df.A, df.B, normalize='columns')
Out[77]:
B 3 4
A
1 0.5 0.0
2 0.5 1.0
```
``crosstab`` can also be passed a third ``Series`` and an aggregation function
(``aggfunc``) that will be applied to the values of the third ``Series`` within
each group defined by the first two ``Series``:
``` python
In [78]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum)
Out[78]:
B 3 4
A
1 1.0 NaN
2 1.0 2.0
```
### Adding margins
Finally, one can also add margins or normalize this output.
``` python
In [79]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True,
....: margins=True)
....:
Out[79]:
B 3 4 All
A
1 0.25 0.0 0.25
2 0.25 0.5 0.75
All 0.50 0.5 1.00
```
## Tiling
The [``cut()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html#pandas.cut) function computes groupings for the values of the input
array and is often used to transform continuous variables to discrete or
categorical variables:
``` python
In [80]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
In [81]: pd.cut(ages, bins=3)
Out[81]:
[(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60.0], (43.333, 60.0]]
Categories (3, interval[float64]): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60.0]]
```
If the ``bins`` keyword is an integer, then equal-width bins are formed.
Alternatively we can specify custom bin-edges:
``` python
In [82]: c = pd.cut(ages, bins=[0, 18, 35, 70])
In [83]: c
Out[83]:
[(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]]
Categories (3, interval[int64]): [(0, 18] < (18, 35] < (35, 70]]
```
*New in version 0.20.0.*
If the ``bins`` keyword is an ``IntervalIndex``, then these will be
used to bin the passed data.:
``` python
pd.cut([25, 20, 50], bins=c.categories)
```
## Computing indicator / dummy variables
To convert a categorical variable into a “dummy” or “indicator” ``DataFrame``,
for example a column in a ``DataFrame`` (a ``Series``) which has ``k`` distinct
values, can derive a ``DataFrame`` containing ``k`` columns of 1s and 0s using
[``get_dummies()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html#pandas.get_dummies):
``` python
In [84]: df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})
In [85]: pd.get_dummies(df['key'])
Out[85]:
a b c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0
```
Sometimes its useful to prefix the column names, for example when merging the result
with the original ``DataFrame``:
``` python
In [86]: dummies = pd.get_dummies(df['key'], prefix='key')
In [87]: dummies
Out[87]:
key_a key_b key_c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0
In [88]: df[['data1']].join(dummies)
Out[88]:
data1 key_a key_b key_c
0 0 0 1 0
1 1 0 1 0
2 2 1 0 0
3 3 0 0 1
4 4 1 0 0
5 5 0 1 0
```
This function is often used along with discretization functions like ``cut``:
``` python
In [89]: values = np.random.randn(10)
In [90]: values
Out[90]:
array([ 0.4082, -1.0481, -0.0257, -0.9884, 0.0941, 1.2627, 1.29 ,
0.0824, -0.0558, 0.5366])
In [91]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]
In [92]: pd.get_dummies(pd.cut(values, bins))
Out[92]:
(0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
0 0 0 1 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 1 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 1 0 0 0 0
8 0 0 0 0 0
9 0 0 1 0 0
```
See also [``Series.str.get_dummies``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.get_dummies.html#pandas.Series.str.get_dummies).
[``get_dummies()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html#pandas.get_dummies) also accepts a ``DataFrame``. By default all categorical
variables (categorical in the statistical sense, those with *object* or
*categorical* dtype) are encoded as dummy variables.
``` python
In [93]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
....: 'C': [1, 2, 3]})
....:
In [94]: pd.get_dummies(df)
Out[94]:
C A_a A_b B_b B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0
```
All non-object columns are included untouched in the output. You can control
the columns that are encoded with the ``columns`` keyword.
``` python
In [95]: pd.get_dummies(df, columns=['A'])
Out[95]:
B C A_a A_b
0 c 1 1 0
1 c 2 0 1
2 b 3 1 0
```
Notice that the ``B`` column is still included in the output, it just hasnt
been encoded. You can drop ``B`` before calling ``get_dummies`` if you dont
want to include it in the output.
As with the ``Series`` version, you can pass values for the ``prefix`` and
``prefix_sep``. By default the column name is used as the prefix, and _ as
the prefix separator. You can specify ``prefix`` and ``prefix_sep`` in 3 ways:
- string: Use the same value for ``prefix`` or ``prefix_sep`` for each column
to be encoded.
- list: Must be the same length as the number of columns being encoded.
- dict: Mapping column name to prefix.
``` python
In [96]: simple = pd.get_dummies(df, prefix='new_prefix')
In [97]: simple
Out[97]:
C new_prefix_a new_prefix_b new_prefix_b new_prefix_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0
In [98]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])
In [99]: from_list
Out[99]:
C from_A_a from_A_b from_B_b from_B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0
In [100]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})
In [101]: from_dict
Out[101]:
C from_A_a from_A_b from_B_b from_B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0
```
*New in version 0.18.0.*
Sometimes it will be useful to only keep k-1 levels of a categorical
variable to avoid collinearity when feeding the result to statistical models.
You can switch to this mode by turn on ``drop_first``.
``` python
In [102]: s = pd.Series(list('abcaa'))
In [103]: pd.get_dummies(s)
Out[103]:
a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
4 1 0 0
In [104]: pd.get_dummies(s, drop_first=True)
Out[104]:
b c
0 0 0
1 1 0
2 0 1
3 0 0
4 0 0
```
When a column contains only one level, it will be omitted in the result.
``` python
In [105]: df = pd.DataFrame({'A': list('aaaaa'), 'B': list('ababc')})
In [106]: pd.get_dummies(df)
Out[106]:
A_a B_a B_b B_c
0 1 1 0 0
1 1 0 1 0
2 1 1 0 0
3 1 0 1 0
4 1 0 0 1
In [107]: pd.get_dummies(df, drop_first=True)
Out[107]:
B_b B_c
0 0 0
1 1 0
2 0 0
3 1 0
4 0 1
```
By default new columns will have ``np.uint8`` dtype.
To choose another dtype, use the ``dtype`` argument:
``` python
In [108]: df = pd.DataFrame({'A': list('abc'), 'B': [1.1, 2.2, 3.3]})
In [109]: pd.get_dummies(df, dtype=bool).dtypes
Out[109]:
B float64
A_a bool
A_b bool
A_c bool
dtype: object
```
*New in version 0.23.0.*
## Factorizing values
To encode 1-d values as an enumerated type use [``factorize()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.factorize.html#pandas.factorize):
``` python
In [110]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
In [111]: x
Out[111]:
0 A
1 A
2 NaN
3 B
4 3.14
5 inf
dtype: object
In [112]: labels, uniques = pd.factorize(x)
In [113]: labels
Out[113]: array([ 0, 0, -1, 1, 2, 3])
In [114]: uniques
Out[114]: Index(['A', 'B', 3.14, inf], dtype='object')
```
Note that ``factorize`` is similar to ``numpy.unique``, but differs in its
handling of NaN:
::: tip Note
The following ``numpy.unique`` will fail under Python 3 with a ``TypeError``
because of an ordering bug. See also
[here](https://github.com/numpy/numpy/issues/641).
:::
``` python
In [1]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
In [2]: pd.factorize(x, sort=True)
Out[2]:
(array([ 2, 2, -1, 3, 0, 1]),
Index([3.14, inf, 'A', 'B'], dtype='object'))
In [3]: np.unique(x, return_inverse=True)[::-1]
Out[3]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))
```
::: tip Note
If you just want to handle one column as a categorical variable (like Rs factor),
you can use ``df["cat_col"] = pd.Categorical(df["col"])`` or
``df["cat_col"] = df["col"].astype("category")``. For full docs on [``Categorical``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Categorical.html#pandas.Categorical),
see the [Categorical introduction](categorical.html#categorical) and the
[API documentation](https://pandas.pydata.org/pandas-docs/stable/reference/arrays.html#api-arrays-categorical).
:::
## Examples
In this section, we will review frequently asked questions and examples. The
column names and relevant column values are named to correspond with how this
DataFrame will be pivoted in the answers below.
``` python
In [115]: np.random.seed([3, 1415])
In [116]: n = 20
In [117]: cols = np.array(['key', 'row', 'item', 'col'])
In [118]: df = cols + pd.DataFrame((np.random.randint(5, size=(n, 4))
.....: // [2, 1, 2, 1]).astype(str))
.....:
In [119]: df.columns = cols
In [120]: df = df.join(pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val'))
In [121]: df
Out[121]:
key row item col val0 val1
0 key0 row3 item1 col3 0.81 0.04
1 key1 row2 item1 col2 0.44 0.07
2 key1 row0 item1 col0 0.77 0.01
3 key0 row4 item0 col2 0.15 0.59
4 key1 row0 item2 col1 0.81 0.64
.. ... ... ... ... ... ...
15 key0 row3 item1 col1 0.31 0.23
16 key0 row0 item2 col3 0.86 0.01
17 key0 row4 item0 col3 0.64 0.21
18 key2 row2 item2 col0 0.13 0.45
19 key0 row2 item0 col4 0.37 0.70
[20 rows x 6 columns]
```
### Pivoting with single aggregations
Suppose we wanted to pivot ``df`` such that the ``col`` values are columns,
``row`` values are the index, and the mean of ``val0`` are the values? In
particular, the resulting DataFrame should look like:
::: tip Note
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 NaN 0.860 0.65
row2 0.13 NaN 0.395 0.500 0.25
row3 NaN 0.310 NaN 0.545 NaN
row4 NaN 0.100 0.395 0.760 0.24
:::
This solution uses [``pivot_table()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html#pandas.pivot_table). Also note that
``aggfunc='mean'`` is the default. It is included here to be explicit.
``` python
In [122]: df.pivot_table(
.....: values='val0', index='row', columns='col', aggfunc='mean')
.....:
Out[122]:
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 NaN 0.860 0.65
row2 0.13 NaN 0.395 0.500 0.25
row3 NaN 0.310 NaN 0.545 NaN
row4 NaN 0.100 0.395 0.760 0.24
```
Note that we can also replace the missing values by using the ``fill_value``
parameter.
``` python
In [123]: df.pivot_table(
.....: values='val0', index='row', columns='col', aggfunc='mean', fill_value=0)
.....:
Out[123]:
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.100 0.395 0.760 0.24
```
Also note that we can pass in other aggregation functions as well. For example,
we can also pass in ``sum``.
``` python
In [124]: df.pivot_table(
.....: values='val0', index='row', columns='col', aggfunc='sum', fill_value=0)
.....:
Out[124]:
col col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65
row2 0.13 0.00 0.79 0.50 0.50
row3 0.00 0.31 0.00 1.09 0.00
row4 0.00 0.10 0.79 1.52 0.24
```
Another aggregation we can do is calculate the frequency in which the columns
and rows occur together a.k.a. “cross tabulation”. To do this, we can pass
``size`` to the ``aggfunc`` parameter.
``` python
In [125]: df.pivot_table(index='row', columns='col', fill_value=0, aggfunc='size')
Out[125]:
col col0 col1 col2 col3 col4
row
row0 1 2 0 1 1
row2 1 0 2 1 2
row3 0 1 0 2 0
row4 0 1 2 2 1
```
### Pivoting with multiple aggregations
We can also perform multiple aggregations. For example, to perform both a
``sum`` and ``mean``, we can pass in a list to the ``aggfunc`` argument.
``` python
In [126]: df.pivot_table(
.....: values='val0', index='row', columns='col', aggfunc=['mean', 'sum'])
.....:
Out[126]:
mean sum
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 0.605 NaN 0.860 0.65 0.77 1.21 NaN 0.86 0.65
row2 0.13 NaN 0.395 0.500 0.25 0.13 NaN 0.79 0.50 0.50
row3 NaN 0.310 NaN 0.545 NaN NaN 0.31 NaN 1.09 NaN
row4 NaN 0.100 0.395 0.760 0.24 NaN 0.10 0.79 1.52 0.24
```
Note to aggregate over multiple value columns, we can pass in a list to the
``values`` parameter.
``` python
In [127]: df.pivot_table(
.....: values=['val0', 'val1'], index='row', columns='col', aggfunc=['mean'])
.....:
Out[127]:
mean
val0 val1
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 0.605 NaN 0.860 0.65 0.01 0.745 NaN 0.010 0.02
row2 0.13 NaN 0.395 0.500 0.25 0.45 NaN 0.34 0.440 0.79
row3 NaN 0.310 NaN 0.545 NaN NaN 0.230 NaN 0.075 NaN
row4 NaN 0.100 0.395 0.760 0.24 NaN 0.070 0.42 0.300 0.46
```
Note to subdivide over multiple columns we can pass in a list to the
``columns`` parameter.
``` python
In [128]: df.pivot_table(
.....: values=['val0'], index='row', columns=['item', 'col'], aggfunc=['mean'])
.....:
Out[128]:
mean
val0
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
row
row0 NaN NaN NaN 0.77 NaN NaN NaN NaN NaN 0.605 0.86 0.65
row2 0.35 NaN 0.37 NaN NaN 0.44 NaN NaN 0.13 NaN 0.50 0.13
row3 NaN NaN NaN NaN 0.31 NaN 0.81 NaN NaN NaN 0.28 NaN
row4 0.15 0.64 NaN NaN 0.10 0.64 0.88 0.24 NaN NaN NaN NaN
```
## Exploding a list-like column
*New in version 0.25.0.*
Sometimes the values in a column are list-like.
``` python
In [129]: keys = ['panda1', 'panda2', 'panda3']
In [130]: values = [['eats', 'shoots'], ['shoots', 'leaves'], ['eats', 'leaves']]
In [131]: df = pd.DataFrame({'keys': keys, 'values': values})
In [132]: df
Out[132]:
keys values
0 panda1 [eats, shoots]
1 panda2 [shoots, leaves]
2 panda3 [eats, leaves]
```
We can explode the ``values`` column, transforming each list-like to a separate row, by using [``explode()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.explode.html#pandas.Series.explode). This will replicate the index values from the original row:
``` python
In [133]: df['values'].explode()
Out[133]:
0 eats
0 shoots
1 shoots
1 leaves
2 eats
2 leaves
Name: values, dtype: object
```
You can also explode the column in the ``DataFrame``.
``` python
In [134]: df.explode('values')
Out[134]:
keys values
0 panda1 eats
0 panda1 shoots
1 panda2 shoots
1 panda2 leaves
2 panda3 eats
2 panda3 leaves
```
[``Series.explode()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.explode.html#pandas.Series.explode) will replace empty lists with ``np.nan`` and preserve scalar entries. The dtype of the resulting ``Series`` is always ``object``.
``` python
In [135]: s = pd.Series([[1, 2, 3], 'foo', [], ['a', 'b']])
In [136]: s
Out[136]:
0 [1, 2, 3]
1 foo
2 []
3 [a, b]
dtype: object
In [137]: s.explode()
Out[137]:
0 1
0 2
0 3
1 foo
2 NaN
3 a
3 b
dtype: object
```
Here is a typical usecase. You have comma separated strings in a column and want to expand this.
``` python
In [138]: df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1},
.....: {'var1': 'd,e,f', 'var2': 2}])
.....:
In [139]: df
Out[139]:
var1 var2
0 a,b,c 1
1 d,e,f 2
```
Creating a long form DataFrame is now straightforward using explode and chained operations
``` python
In [140]: df.assign(var1=df.var1.str.split(',')).explode('var1')
Out[140]:
var1 var2
0 a 1
0 b 1
0 c 1
1 d 2
1 e 2
1 f 2
```