Files
notes_estom/Python/matplotlab/gallery/statistics/histogram_features.md
2020-09-26 22:03:11 +08:00

60 lines
1.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 直方图(hist)函数的几个特性演示
除基本直方图外,此演示还显示了一些可选功能:
- 设置数据箱的数量。
- ``标准化``标志用于标准化箱高度使直方图的积分为1.得到的直方图是概率密度函数的近似值。
- 设置条形的面部颜色。
- 设置不透明度alpha值
选择不同的存储量和大小会显著影响直方图的形状。Astropy文档有很多关于如何选择这些参数的部分。
```python
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(19680801)
# example data
mu = 100 # mean of distribution
sigma = 15 # standard deviation of distribution
x = mu + sigma * np.random.randn(437)
num_bins = 50
fig, ax = plt.subplots()
# the histogram of the data
n, bins, patches = ax.hist(x, num_bins, density=1)
# add a 'best fit' line
y = ((1 / (np.sqrt(2 * np.pi) * sigma)) *
np.exp(-0.5 * (1 / sigma * (bins - mu))**2))
ax.plot(bins, y, '--')
ax.set_xlabel('Smarts')
ax.set_ylabel('Probability density')
ax.set_title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')
# Tweak spacing to prevent clipping of ylabel
fig.tight_layout()
plt.show()
```
![直方图特性演示](https://matplotlib.org/_images/sphx_glr_histogram_features_001.png)
## 参考
此示例显示了以下函数和方法的使用:
```python
matplotlib.axes.Axes.hist
matplotlib.axes.Axes.set_title
matplotlib.axes.Axes.set_xlabel
matplotlib.axes.Axes.set_ylabel
```
## 下载这个示例
- [下载python源码: histogram_features.py](https://matplotlib.org/_downloads/histogram_features.py)
- [下载Jupyter notebook: histogram_features.ipynb](https://matplotlib.org/_downloads/histogram_features.ipynb)