mirror of
https://github.com/Estom/notes.git
synced 2026-02-04 19:13:24 +08:00
73 lines
4.5 KiB
Markdown
73 lines
4.5 KiB
Markdown
---
|
||
meta:
|
||
- name: keywords
|
||
content: pandas教程,pandas资料
|
||
- name: description
|
||
content: 为方便新用户上手 Pandas,本节收录了众多 Pandas 教程。Pandas 团队出品。
|
||
---
|
||
|
||
# 教程资料
|
||
|
||
为方便新用户上手 Pandas,本节收录了众多 Pandas 教程。
|
||
|
||
## 官方指南
|
||
|
||
[十分钟入门 Pandas](/docs/getting_started/10min.html),Pandas 团队出品。
|
||
|
||
[Cookbook](/docs/user_guide/cookbook.html) ,Pandas 实用案例。
|
||
|
||
[Pandas 速查表](http://Pandas.pydata.org/Pandas_Cheat_Sheet.pdf),案头必备。
|
||
|
||
## 社区指南
|
||
|
||
### 《Pandas Cookbook》Julia Evans 著
|
||
|
||
[Julia Evans](http://jvns.ca/) 2015 年编著的《Pandas Cookbook》包含了很多 Pandas 实战例子,这些例子大多基于实战数据,涵盖了绝大多数新手小白遇到的实际问题。代码请参阅 Pandas-cookbook 的 [GitHub 仓库](http://github.com/jvns/Pandas-cookbook)。
|
||
|
||
### 《Learn Pandas》 Hernan Rojas 著
|
||
|
||
面对新用户介绍 Pandas 学习经验:
|
||
[https://bitbucket.org/hrojas/learn-Pandas](https://bitbucket.org/hrojas/learn-Pandas)
|
||
|
||
### Python 数据分析实战
|
||
|
||
该[指南](http://wavedatalab.github.io/datawithpython)介绍了用 Python 数据生态系统对开源数据集进行数据分析的过程。涵盖了[数据整理](http://wavedatalab.github.io/datawithpython/munge.html)、[数据聚合](http://wavedatalab.github.io/datawithpython/aggregate.html)、[数据可视化](http://wavedatalab.github.io/datawithpython/visualize.html)和[时间序列](http://wavedatalab.github.io/datawithpython/timeseries.html)。
|
||
|
||
### 新手习题
|
||
|
||
用真实数据集与习题,锻炼 Pandas 运用能力。更多资源,请参阅[这个仓库](https://github.com/guipsamora/Pandas_exercises)。
|
||
|
||
### 现代 Pandas
|
||
|
||
[Tom Augspurger](https://github.com/TomAugspurger) 2016 年编写的系列教程。源文件在 GitHub 存储库 [TomAugspurger/effective-Pandas](https://github.com/TomAugspurger/effective-Pandas)。
|
||
|
||
- [现代 Pandas](http://tomaugspurger.github.io/modern-1-intro.html)
|
||
- [方法链](http://tomaugspurger.github.io/method-chaining.html)
|
||
- [索引](http://tomaugspurger.github.io/modern-3-indexes.html)
|
||
- [性能](http://tomaugspurger.github.io/modern-4-performance.html)
|
||
- [清洗数据](http://tomaugspurger.github.io/modern-5-tidy.html)
|
||
- [可视化](http://tomaugspurger.github.io/modern-6-visualization.html)
|
||
- [时间序列](http://tomaugspurger.github.io/modern-7-timeseries.html)
|
||
|
||
### 用 Pandas、vincent 和 xlsxwriter 绘制 Excel 图
|
||
|
||
[用 Pandas、vincent 和 xlsxwriter 绘制 Excel 图](https://Pandas-xlsxwriter-charts.readthedocs.io/)
|
||
|
||
### 视频教程
|
||
|
||
- [Pandas 零基础](https://www.youtube.com/watch?v=5JnMutdy6Fw) (2015) (2:24) [GitHub repo](https://github.com/brandon-rhodes/pycon-Pandas-tutorial)
|
||
- [Pandas 简介](https://www.youtube.com/watch?v=-NR-ynQg0YM) (2016) (1:28) [GitHub repo](https://github.com/chendaniely/2016-pydata-carolinas-Pandas)
|
||
- [Pandas:从 head() 到 tail()](https://www.youtube.com/watch?v=7vuO9QXDN50) (2016) (1:26) [GitHub repo](https://github.com/TomAugspurger/pydata-chi-h2t)
|
||
- [Pandas 数据分析](https://www.youtube.com/playlist?list=PL5-da3qGB5ICCsgW1MxlZ0Hq8LL5U3u9y) (2016-2018) [GitHub repo](https://github.com/justmarkham/Pandas-videos) 与 [Jupyter Notebook](http://nbviewer.jupyter.org/github/justmarkham/Pandas-videos/blob/master/Pandas.ipynb)
|
||
- [Pandas 最佳实践](https://www.youtube.com/playlist?list=PL5-da3qGB5IBITZj_dYSFqnd_15JgqwA6) (2018) [GitHub repo](https://github.com/justmarkham/pycon-2018-tutorial) 与 [Jupyter Notebook](http://nbviewer.jupyter.org/github/justmarkham/pycon-2018-tutorial/blob/master/tutorial.ipynb)
|
||
|
||
### 其它教程
|
||
|
||
- [Wes McKinney(Pandas 仁慈的终身独裁者)博客](http://blog.wesmckinney.com/)
|
||
- [轻松上手 Python 统计分析 - SciPy 与 Pandas,Randal Olson](http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/)
|
||
- [Python 统计数据分析,Christopher Fonnesbeck,SciPy 2013](http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109)
|
||
- [Python 金融分析,Thomas Wiecki](http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb)
|
||
- [Pandas 数据结构,Greg Reda](http://www.gregreda.com/2013/10/26/intro-to-Pandas-data-structures/)
|
||
- [Pandas 与 Python:Top 10,Manish Amde](http://manishamde.github.io/blog/2013/03/07/Pandas-and-python-top-10/)
|
||
- [Pandas DataFrames 教程,Karlijn Willems](http://www.datacamp.com/community/tutorials/Pandas-tutorial-dataframe-python)
|
||
- [实战案例简明教程](https://tutswiki.com/Pandas-cookbook/chapter1) |