mirror of
https://github.com/Estom/notes.git
synced 2026-02-08 13:05:57 +08:00
832 lines
22 KiB
Markdown
832 lines
22 KiB
Markdown
# 时间差
|
||
|
||
`Timedelta`,时间差,即时间之间的差异,用 `日、时、分、秒` 等时间单位表示,时间单位可为正,也可为负。
|
||
|
||
`Timedelta` 是 `datetime.timedelta` 的子类,两者的操作方式相似,但 `Timedelta` 兼容 `np.timedelta64` 等数据类型,还支持自定义表示形式、能解析多种类型的数据,并支持自有属性。
|
||
|
||
## 解析数据,生成时间差
|
||
|
||
`Timedelta()` 支持用多种参数生成时间差:
|
||
|
||
``` python
|
||
In [1]: import datetime
|
||
|
||
# 字符串
|
||
In [2]: pd.Timedelta('1 days')
|
||
Out[2]: Timedelta('1 days 00:00:00')
|
||
|
||
In [3]: pd.Timedelta('1 days 00:00:00')
|
||
Out[3]: Timedelta('1 days 00:00:00')
|
||
|
||
In [4]: pd.Timedelta('1 days 2 hours')
|
||
Out[4]: Timedelta('1 days 02:00:00')
|
||
|
||
In [5]: pd.Timedelta('-1 days 2 min 3us')
|
||
Out[5]: Timedelta('-2 days +23:57:59.999997')
|
||
|
||
# datetime.timedelta
|
||
# 注意:必须指定关键字参数
|
||
In [6]: pd.Timedelta(days=1, seconds=1)
|
||
Out[6]: Timedelta('1 days 00:00:01')
|
||
|
||
# 用整数与时间单位生成时间差
|
||
In [7]: pd.Timedelta(1, unit='d')
|
||
Out[7]: Timedelta('1 days 00:00:00')
|
||
|
||
# datetime.timedelta 与 np.timedelta64
|
||
In [8]: pd.Timedelta(datetime.timedelta(days=1, seconds=1))
|
||
Out[8]: Timedelta('1 days 00:00:01')
|
||
|
||
In [9]: pd.Timedelta(np.timedelta64(1, 'ms'))
|
||
Out[9]: Timedelta('0 days 00:00:00.001000')
|
||
|
||
# 用字符串表示负数时间差
|
||
# 更接近 datetime.timedelta
|
||
In [10]: pd.Timedelta('-1us')
|
||
Out[10]: Timedelta('-1 days +23:59:59.999999')
|
||
|
||
# 时间差缺失值
|
||
In [11]: pd.Timedelta('nan')
|
||
Out[11]: NaT
|
||
|
||
In [12]: pd.Timedelta('nat')
|
||
Out[12]: NaT
|
||
|
||
# ISO8601 时间格式字符串
|
||
In [13]: pd.Timedelta('P0DT0H1M0S')
|
||
Out[13]: Timedelta('0 days 00:01:00')
|
||
|
||
In [14]: pd.Timedelta('P0DT0H0M0.000000123S')
|
||
Out[14]: Timedelta('0 days 00:00:00.000000')
|
||
```
|
||
|
||
*0.23.0 版新增*:增加了用 [ISO8601 时间格式](https://en.wikipedia.org/wiki/ISO_8601#Durations)生成时间差。
|
||
|
||
[DateOffsets](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offsets)(`Day`、`Hour`、`Minute`、`Second`、`Milli`、`Micro`、`Nano`)也可以用来生成时间差。
|
||
|
||
``` python
|
||
In [15]: pd.Timedelta(pd.offsets.Second(2))
|
||
Out[15]: Timedelta('0 days 00:00:02')
|
||
```
|
||
|
||
标量运算生成的也是 `Timedelta` 标量。
|
||
|
||
``` python
|
||
In [16]: pd.Timedelta(pd.offsets.Day(2)) + pd.Timedelta(pd.offsets.Second(2)) +\
|
||
....: pd.Timedelta('00:00:00.000123')
|
||
....:
|
||
Out[16]: Timedelta('2 days 00:00:02.000123')
|
||
```
|
||
|
||
### to_timedelta
|
||
|
||
`pd.to_timedelta()` 可以把符合时间差格式的标量、数组、列表、序列等数据转换为`Timedelta`。输入数据是序列,输出的就是序列,输入数据是标量,输出的就是标量,其它形式的输入数据则输出 `TimedeltaIndex`。
|
||
|
||
`to_timedelta()` 可以解析单个字符串:
|
||
|
||
``` python
|
||
In [17]: pd.to_timedelta('1 days 06:05:01.00003')
|
||
Out[17]: Timedelta('1 days 06:05:01.000030')
|
||
|
||
In [18]: pd.to_timedelta('15.5us')
|
||
Out[18]: Timedelta('0 days 00:00:00.000015')
|
||
```
|
||
|
||
还能解析字符串列表或数组:
|
||
|
||
``` python
|
||
In [19]: pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
|
||
Out[19]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64[ns]', freq=None)
|
||
```
|
||
|
||
`unit` 关键字参数指定时间差的单位:
|
||
|
||
``` python
|
||
In [20]: pd.to_timedelta(np.arange(5), unit='s')
|
||
Out[20]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelta64[ns]', freq=None)
|
||
|
||
In [21]: pd.to_timedelta(np.arange(5), unit='d')
|
||
Out[21]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)
|
||
```
|
||
|
||
### 时间差界限
|
||
|
||
Pandas 时间差的纳秒解析度是 64 位整数,这就决定了 `Timedelta` 的上下限。
|
||
|
||
``` python
|
||
In [22]: pd.Timedelta.min
|
||
Out[22]: Timedelta('-106752 days +00:12:43.145224')
|
||
|
||
In [23]: pd.Timedelta.max
|
||
Out[23]: Timedelta('106751 days 23:47:16.854775')
|
||
```
|
||
|
||
## 运算
|
||
|
||
以时间差为数据的 `Series` 与 `DataFrame` 支持各种运算,`datetime64 [ns]` 序列或 `Timestamps` 减法运算生成的是`timedelta64 [ns]` 序列。
|
||
|
||
``` python
|
||
In [24]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))
|
||
|
||
In [25]: td = pd.Series([pd.Timedelta(days=i) for i in range(3)])
|
||
|
||
In [26]: df = pd.DataFrame({'A': s, 'B': td})
|
||
|
||
In [27]: df
|
||
Out[27]:
|
||
A B
|
||
0 2012-01-01 0 days
|
||
1 2012-01-02 1 days
|
||
2 2012-01-03 2 days
|
||
|
||
In [28]: df['C'] = df['A'] + df['B']
|
||
|
||
In [29]: df
|
||
Out[29]:
|
||
A B C
|
||
0 2012-01-01 0 days 2012-01-01
|
||
1 2012-01-02 1 days 2012-01-03
|
||
2 2012-01-03 2 days 2012-01-05
|
||
|
||
In [30]: df.dtypes
|
||
Out[30]:
|
||
A datetime64[ns]
|
||
B timedelta64[ns]
|
||
C datetime64[ns]
|
||
dtype: object
|
||
|
||
In [31]: s - s.max()
|
||
Out[31]:
|
||
0 -2 days
|
||
1 -1 days
|
||
2 0 days
|
||
dtype: timedelta64[ns]
|
||
|
||
In [32]: s - datetime.datetime(2011, 1, 1, 3, 5)
|
||
Out[32]:
|
||
0 364 days 20:55:00
|
||
1 365 days 20:55:00
|
||
2 366 days 20:55:00
|
||
dtype: timedelta64[ns]
|
||
|
||
In [33]: s + datetime.timedelta(minutes=5)
|
||
Out[33]:
|
||
0 2012-01-01 00:05:00
|
||
1 2012-01-02 00:05:00
|
||
2 2012-01-03 00:05:00
|
||
dtype: datetime64[ns]
|
||
|
||
In [34]: s + pd.offsets.Minute(5)
|
||
Out[34]:
|
||
0 2012-01-01 00:05:00
|
||
1 2012-01-02 00:05:00
|
||
2 2012-01-03 00:05:00
|
||
dtype: datetime64[ns]
|
||
|
||
In [35]: s + pd.offsets.Minute(5) + pd.offsets.Milli(5)
|
||
Out[35]:
|
||
0 2012-01-01 00:05:00.005
|
||
1 2012-01-02 00:05:00.005
|
||
2 2012-01-03 00:05:00.005
|
||
dtype: datetime64[ns]
|
||
```
|
||
|
||
`timedelta64 [ns]` 序列的标量运算:
|
||
|
||
``` python
|
||
In [36]: y = s - s[0]
|
||
|
||
In [37]: y
|
||
Out[37]:
|
||
0 0 days
|
||
1 1 days
|
||
2 2 days
|
||
dtype: timedelta64[ns]
|
||
```
|
||
|
||
时间差序列支持 `NaT` 值:
|
||
|
||
``` python
|
||
In [38]: y = s - s.shift()
|
||
|
||
In [39]: y
|
||
Out[39]:
|
||
0 NaT
|
||
1 1 days
|
||
2 1 days
|
||
dtype: timedelta64[ns]
|
||
```
|
||
|
||
与 `datetime` 类似,`np.nan` 把时间差设置为 `NaT`:
|
||
|
||
``` python
|
||
In [40]: y[1] = np.nan
|
||
|
||
In [41]: y
|
||
Out[41]:
|
||
0 NaT
|
||
1 NaT
|
||
2 1 days
|
||
dtype: timedelta64[ns]
|
||
```
|
||
|
||
运算符也可以显示为逆序(序列与单个对象的运算):
|
||
|
||
``` python
|
||
In [42]: s.max() - s
|
||
Out[42]:
|
||
0 2 days
|
||
1 1 days
|
||
2 0 days
|
||
dtype: timedelta64[ns]
|
||
|
||
In [43]: datetime.datetime(2011, 1, 1, 3, 5) - s
|
||
Out[43]:
|
||
0 -365 days +03:05:00
|
||
1 -366 days +03:05:00
|
||
2 -367 days +03:05:00
|
||
dtype: timedelta64[ns]
|
||
|
||
In [44]: datetime.timedelta(minutes=5) + s
|
||
Out[44]:
|
||
0 2012-01-01 00:05:00
|
||
1 2012-01-02 00:05:00
|
||
2 2012-01-03 00:05:00
|
||
dtype: datetime64[ns]
|
||
```
|
||
|
||
`DataFrame` 支持 `min`、`max` 及 `idxmin`、`idxmax` 运算:
|
||
|
||
``` python
|
||
In [45]: A = s - pd.Timestamp('20120101') - pd.Timedelta('00:05:05')
|
||
|
||
In [46]: B = s - pd.Series(pd.date_range('2012-1-2', periods=3, freq='D'))
|
||
|
||
In [47]: df = pd.DataFrame({'A': A, 'B': B})
|
||
|
||
In [48]: df
|
||
Out[48]:
|
||
A B
|
||
0 -1 days +23:54:55 -1 days
|
||
1 0 days 23:54:55 -1 days
|
||
2 1 days 23:54:55 -1 days
|
||
|
||
In [49]: df.min()
|
||
Out[49]:
|
||
A -1 days +23:54:55
|
||
B -1 days +00:00:00
|
||
dtype: timedelta64[ns]
|
||
|
||
In [50]: df.min(axis=1)
|
||
Out[50]:
|
||
0 -1 days
|
||
1 -1 days
|
||
2 -1 days
|
||
dtype: timedelta64[ns]
|
||
|
||
In [51]: df.idxmin()
|
||
Out[51]:
|
||
A 0
|
||
B 0
|
||
dtype: int64
|
||
|
||
In [52]: df.idxmax()
|
||
Out[52]:
|
||
A 2
|
||
B 0
|
||
dtype: int64
|
||
```
|
||
|
||
`Series` 也支持`min`、`max` 及 `idxmin`、`idxmax` 运算。标量计算结果为 `Timedelta`。
|
||
|
||
``` python
|
||
In [53]: df.min().max()
|
||
Out[53]: Timedelta('-1 days +23:54:55')
|
||
|
||
In [54]: df.min(axis=1).min()
|
||
Out[54]: Timedelta('-1 days +00:00:00')
|
||
|
||
In [55]: df.min().idxmax()
|
||
Out[55]: 'A'
|
||
|
||
In [56]: df.min(axis=1).idxmin()
|
||
Out[56]: 0
|
||
```
|
||
|
||
时间差支持 `fillna` 函数,参数是 `Timedelta`,用于指定填充值。
|
||
|
||
``` python
|
||
In [57]: y.fillna(pd.Timedelta(0))
|
||
Out[57]:
|
||
0 0 days
|
||
1 0 days
|
||
2 1 days
|
||
dtype: timedelta64[ns]
|
||
|
||
In [58]: y.fillna(pd.Timedelta(10, unit='s'))
|
||
Out[58]:
|
||
0 0 days 00:00:10
|
||
1 0 days 00:00:10
|
||
2 1 days 00:00:00
|
||
dtype: timedelta64[ns]
|
||
|
||
In [59]: y.fillna(pd.Timedelta('-1 days, 00:00:05'))
|
||
Out[59]:
|
||
0 -1 days +00:00:05
|
||
1 -1 days +00:00:05
|
||
2 1 days 00:00:00
|
||
dtype: timedelta64[ns]
|
||
```
|
||
|
||
`Timedelta` 还支持取反、乘法及绝对值(`Abs`)运算:
|
||
|
||
``` python
|
||
In [60]: td1 = pd.Timedelta('-1 days 2 hours 3 seconds')
|
||
|
||
In [61]: td1
|
||
Out[61]: Timedelta('-2 days +21:59:57')
|
||
|
||
In [62]: -1 * td1
|
||
Out[62]: Timedelta('1 days 02:00:03')
|
||
|
||
In [63]: - td1
|
||
Out[63]: Timedelta('1 days 02:00:03')
|
||
|
||
In [64]: abs(td1)
|
||
Out[64]: Timedelta('1 days 02:00:03')
|
||
```
|
||
|
||
## 归约
|
||
|
||
`timedelta64 [ns]` 数值归约运算返回的是 `Timedelta` 对象。 一般情况下,`NaT` 不计数。
|
||
|
||
``` python
|
||
In [65]: y2 = pd.Series(pd.to_timedelta(['-1 days +00:00:05', 'nat',
|
||
....: '-1 days +00:00:05', '1 days']))
|
||
....:
|
||
|
||
In [66]: y2
|
||
Out[66]:
|
||
0 -1 days +00:00:05
|
||
1 NaT
|
||
2 -1 days +00:00:05
|
||
3 1 days 00:00:00
|
||
dtype: timedelta64[ns]
|
||
|
||
In [67]: y2.mean()
|
||
Out[67]: Timedelta('-1 days +16:00:03.333333')
|
||
|
||
In [68]: y2.median()
|
||
Out[68]: Timedelta('-1 days +00:00:05')
|
||
|
||
In [69]: y2.quantile(.1)
|
||
Out[69]: Timedelta('-1 days +00:00:05')
|
||
|
||
In [70]: y2.sum()
|
||
Out[70]: Timedelta('-1 days +00:00:10')
|
||
```
|
||
|
||
## 频率转换
|
||
|
||
时间差除法把 `Timedelta` 序列、`TimedeltaIndex`、`Timedelta` 标量转换为其它“频率”,`astype` 也可以将之转换为指定的时间差。这些运算生成的是序列,并把 `NaT` 转换为 `nan`。 注意,NumPy 标量除法是真除法,`astype` 则等同于取底整除(Floor Division)。
|
||
|
||
::: tip 说明
|
||
|
||
Floor Division ,即两数的商为向下取整,如,9 / 2 = 4。又译作地板除或向下取整除,本文译作**取底整除**;
|
||
|
||
扩展知识:
|
||
|
||
Ceiling Division,即两数的商为向上取整,如,9 / 2 = 5。又译作屋顶除或向上取整除,本文译作**取顶整除**。
|
||
|
||
:::
|
||
|
||
``` python
|
||
In [71]: december = pd.Series(pd.date_range('20121201', periods=4))
|
||
|
||
In [72]: january = pd.Series(pd.date_range('20130101', periods=4))
|
||
|
||
In [73]: td = january - december
|
||
|
||
In [74]: td[2] += datetime.timedelta(minutes=5, seconds=3)
|
||
|
||
In [75]: td[3] = np.nan
|
||
|
||
In [76]: td
|
||
Out[76]:
|
||
0 31 days 00:00:00
|
||
1 31 days 00:00:00
|
||
2 31 days 00:05:03
|
||
3 NaT
|
||
dtype: timedelta64[ns]
|
||
|
||
# 转为日
|
||
In [77]: td / np.timedelta64(1, 'D')
|
||
Out[77]:
|
||
0 31.000000
|
||
1 31.000000
|
||
2 31.003507
|
||
3 NaN
|
||
dtype: float64
|
||
|
||
In [78]: td.astype('timedelta64[D]')
|
||
Out[78]:
|
||
0 31.0
|
||
1 31.0
|
||
2 31.0
|
||
3 NaN
|
||
dtype: float64
|
||
|
||
# 转为秒
|
||
In [79]: td / np.timedelta64(1, 's')
|
||
Out[79]:
|
||
0 2678400.0
|
||
1 2678400.0
|
||
2 2678703.0
|
||
3 NaN
|
||
dtype: float64
|
||
|
||
In [80]: td.astype('timedelta64[s]')
|
||
Out[80]:
|
||
0 2678400.0
|
||
1 2678400.0
|
||
2 2678703.0
|
||
3 NaN
|
||
dtype: float64
|
||
|
||
# 转为月 (此处用常量表示)
|
||
In [81]: td / np.timedelta64(1, 'M')
|
||
Out[81]:
|
||
0 1.018501
|
||
1 1.018501
|
||
2 1.018617
|
||
3 NaN
|
||
dtype: float64
|
||
```
|
||
|
||
`timedelta64 [ns]` 序列与整数或整数序列相乘或相除,生成的也是 `timedelta64 [ns]` 序列。
|
||
|
||
``` python
|
||
In [82]: td * -1
|
||
Out[82]:
|
||
0 -31 days +00:00:00
|
||
1 -31 days +00:00:00
|
||
2 -32 days +23:54:57
|
||
3 NaT
|
||
dtype: timedelta64[ns]
|
||
|
||
In [83]: td * pd.Series([1, 2, 3, 4])
|
||
Out[83]:
|
||
0 31 days 00:00:00
|
||
1 62 days 00:00:00
|
||
2 93 days 00:15:09
|
||
3 NaT
|
||
dtype: timedelta64[ns]
|
||
```
|
||
|
||
`timedelta64 [ns]` 序列与 `Timedelta` 标量相除的结果为取底整除的整数序列。
|
||
|
||
|
||
``` python
|
||
In [84]: td // pd.Timedelta(days=3, hours=4)
|
||
Out[84]:
|
||
0 9.0
|
||
1 9.0
|
||
2 9.0
|
||
3 NaN
|
||
dtype: float64
|
||
|
||
In [85]: pd.Timedelta(days=3, hours=4) // td
|
||
Out[85]:
|
||
0 0.0
|
||
1 0.0
|
||
2 0.0
|
||
3 NaN
|
||
dtype: float64
|
||
```
|
||
|
||
`Timedelta` 的求余(`mod(%)`)与除余(`divmod`)运算,支持时间差与数值参数。
|
||
|
||
``` python
|
||
In [86]: pd.Timedelta(hours=37) % datetime.timedelta(hours=2)
|
||
Out[86]: Timedelta('0 days 01:00:00')
|
||
|
||
# 除余运算的参数为时间差时,返回一对值(int, Timedelta)
|
||
In [87]: divmod(datetime.timedelta(hours=2), pd.Timedelta(minutes=11))
|
||
Out[87]: (10, Timedelta('0 days 00:10:00'))
|
||
|
||
# 除余运算的参数为数值时,也返回一对值(Timedelta, Timedelta)
|
||
In [88]: divmod(pd.Timedelta(hours=25), 86400000000000)
|
||
Out[88]: (Timedelta('0 days 00:00:00.000000'), Timedelta('0 days 01:00:00'))
|
||
```
|
||
|
||
## 属性
|
||
|
||
`Timedelta` 或 `TimedeltaIndex` 的组件可以直接访问 `days`、`seconds`、`microseconds`、`nanoseconds` 等属性。这些属性与`datetime.timedelta` 的返回值相同,例如,`.seconds` 属性表示大于等于 0 天且小于 1 天的秒数。带符号的 `Timedelta` 返回的值也带符号。
|
||
|
||
`Series` 的 `.dt` 属性也可以直接访问这些数据。
|
||
|
||
::: tip 注意
|
||
|
||
这些属性**不是** `Timedelta` 显示的值。`.components` 可以提取显示的值。
|
||
|
||
:::
|
||
|
||
对于 `Series`:
|
||
|
||
``` python
|
||
In [89]: td.dt.days
|
||
Out[89]:
|
||
0 31.0
|
||
1 31.0
|
||
2 31.0
|
||
3 NaN
|
||
dtype: float64
|
||
|
||
In [90]: td.dt.seconds
|
||
Out[90]:
|
||
0 0.0
|
||
1 0.0
|
||
2 303.0
|
||
3 NaN
|
||
dtype: float64
|
||
```
|
||
|
||
直接访问 `Timedelta` 标量字段值。
|
||
|
||
``` python
|
||
In [91]: tds = pd.Timedelta('31 days 5 min 3 sec')
|
||
|
||
In [92]: tds.days
|
||
Out[92]: 31
|
||
|
||
In [93]: tds.seconds
|
||
Out[93]: 303
|
||
|
||
In [94]: (-tds).seconds
|
||
Out[94]: 86097
|
||
```
|
||
|
||
`.components` 属性可以快速访问时间差的组件,返回结果是 `DataFrame`。 下列代码输出 `Timedelta` 的显示值。
|
||
|
||
``` python
|
||
In [95]: td.dt.components
|
||
Out[95]:
|
||
days hours minutes seconds milliseconds microseconds nanoseconds
|
||
0 31.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||
1 31.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||
2 31.0 0.0 5.0 3.0 0.0 0.0 0.0
|
||
3 NaN NaN NaN NaN NaN NaN NaN
|
||
|
||
In [96]: td.dt.components.seconds
|
||
Out[96]:
|
||
0 0.0
|
||
1 0.0
|
||
2 3.0
|
||
3 NaN
|
||
Name: seconds, dtype: float64
|
||
```
|
||
|
||
`.isoformat` 方法可以把 `Timedelta` 转换为 [ISO8601 时间格式](https://en.wikipedia.org/wiki/ISO_8601#Durations)字符串。
|
||
|
||
*0.20.0 版新增。*
|
||
|
||
``` python
|
||
In [97]: pd.Timedelta(days=6, minutes=50, seconds=3,
|
||
....: milliseconds=10, microseconds=10,
|
||
....: nanoseconds=12).isoformat()
|
||
....:
|
||
Out[97]: 'P6DT0H50M3.010010012S'
|
||
```
|
||
|
||
## TimedeltaIndex
|
||
|
||
[`TimedeltaIndex`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.TimedeltaIndex.html#pandas.TimedeltaIndex) 或 [`timedelta_range()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.timedelta_range.html#pandas.timedelta_range) 可以生成时间差索引。
|
||
|
||
`TimedeltaIndex` 支持字符串型的 `Timedelta`、`timedelta` 或 `np.timedelta64`对象。
|
||
|
||
`np.nan`、`pd.NaT`、`nat` 代表缺失值。
|
||
|
||
``` python
|
||
In [98]: pd.TimedeltaIndex(['1 days', '1 days, 00:00:05', np.timedelta64(2, 'D'),
|
||
....: datetime.timedelta(days=2, seconds=2)])
|
||
....:
|
||
Out[98]:
|
||
TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',
|
||
'2 days 00:00:02'],
|
||
dtype='timedelta64[ns]', freq=None)
|
||
```
|
||
|
||
`freq` 关键字参数为 `infer` 时,`TimedeltaIndex` 可以自行推断时间频率:
|
||
|
||
``` python
|
||
In [99]: pd.TimedeltaIndex(['0 days', '10 days', '20 days'], freq='infer')
|
||
Out[99]: TimedeltaIndex(['0 days', '10 days', '20 days'], dtype='timedelta64[ns]', freq='10D')
|
||
```
|
||
|
||
### 生成时间差范围
|
||
|
||
与 [`date_range()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.date_range.html#pandas.date_range) 相似,[`timedelta_range()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.timedelta_range.html#pandas.timedelta_range) 可以生成定频 `TimedeltaIndex`,`timedelta_range` 的默认频率是日历日:
|
||
|
||
``` python
|
||
In [100]: pd.timedelta_range(start='1 days', periods=5)
|
||
Out[100]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]', freq='D')
|
||
```
|
||
|
||
`timedelta_range` 支持 `start`、`end`、`periods` 三个参数:
|
||
|
||
``` python
|
||
In [101]: pd.timedelta_range(start='1 days', end='5 days')
|
||
Out[101]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]', freq='D')
|
||
|
||
In [102]: pd.timedelta_range(end='10 days', periods=4)
|
||
Out[102]: TimedeltaIndex(['7 days', '8 days', '9 days', '10 days'], dtype='timedelta64[ns]', freq='D')
|
||
```
|
||
|
||
`freq` 参数支持各种[频率别名](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases):
|
||
|
||
``` python
|
||
In [103]: pd.timedelta_range(start='1 days', end='2 days', freq='30T')
|
||
Out[103]:
|
||
TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
|
||
'1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
|
||
'1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
|
||
'1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
|
||
'1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
|
||
'1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
|
||
'1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
|
||
'1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
|
||
'1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
|
||
'1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
|
||
'1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
|
||
'1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
|
||
'1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
|
||
'1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
|
||
'1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
|
||
'1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
|
||
'2 days 00:00:00'],
|
||
dtype='timedelta64[ns]', freq='30T')
|
||
|
||
In [104]: pd.timedelta_range(start='1 days', periods=5, freq='2D5H')
|
||
Out[104]:
|
||
TimedeltaIndex(['1 days 00:00:00', '3 days 05:00:00', '5 days 10:00:00',
|
||
'7 days 15:00:00', '9 days 20:00:00'],
|
||
dtype='timedelta64[ns]', freq='53H')
|
||
```
|
||
|
||
*0.23.0 版新增*。
|
||
|
||
用 `start`、`end`、`period` 可以生成等宽时间差范围,其中,`start` 与 `end`(含)是起止两端的时间,`periods` 为 `TimedeltaIndex` 里的元素数量:
|
||
|
||
``` python
|
||
In [105]: pd.timedelta_range('0 days', '4 days', periods=5)
|
||
Out[105]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)
|
||
|
||
In [106]: pd.timedelta_range('0 days', '4 days', periods=10)
|
||
Out[106]:
|
||
TimedeltaIndex(['0 days 00:00:00', '0 days 10:40:00', '0 days 21:20:00',
|
||
'1 days 08:00:00', '1 days 18:40:00', '2 days 05:20:00',
|
||
'2 days 16:00:00', '3 days 02:40:00', '3 days 13:20:00',
|
||
'4 days 00:00:00'],
|
||
dtype='timedelta64[ns]', freq=None)
|
||
```
|
||
|
||
### TimedeltaIndex 应用
|
||
|
||
与 `DatetimeIndex`、`PeriodIndex` 等 `datetime` 型索引类似,`TimedeltaIndex` 也可当作 pandas 对象的索引。
|
||
|
||
``` python
|
||
In [107]: s = pd.Series(np.arange(100),
|
||
.....: index=pd.timedelta_range('1 days', periods=100, freq='h'))
|
||
.....:
|
||
|
||
In [108]: s
|
||
Out[108]:
|
||
1 days 00:00:00 0
|
||
1 days 01:00:00 1
|
||
1 days 02:00:00 2
|
||
1 days 03:00:00 3
|
||
1 days 04:00:00 4
|
||
..
|
||
4 days 23:00:00 95
|
||
5 days 00:00:00 96
|
||
5 days 01:00:00 97
|
||
5 days 02:00:00 98
|
||
5 days 03:00:00 99
|
||
Freq: H, Length: 100, dtype: int64
|
||
```
|
||
|
||
选择操作也差不多,可以强制转换字符串与切片:
|
||
|
||
``` python
|
||
In [109]: s['1 day':'2 day']
|
||
Out[109]:
|
||
1 days 00:00:00 0
|
||
1 days 01:00:00 1
|
||
1 days 02:00:00 2
|
||
1 days 03:00:00 3
|
||
1 days 04:00:00 4
|
||
..
|
||
2 days 19:00:00 43
|
||
2 days 20:00:00 44
|
||
2 days 21:00:00 45
|
||
2 days 22:00:00 46
|
||
2 days 23:00:00 47
|
||
Freq: H, Length: 48, dtype: int64
|
||
|
||
In [110]: s['1 day 01:00:00']
|
||
Out[110]: 1
|
||
|
||
In [111]: s[pd.Timedelta('1 day 1h')]
|
||
Out[111]: 1
|
||
```
|
||
|
||
`TimedeltaIndex` 还支持局部字符串选择,并且可以推断选择范围:
|
||
|
||
``` python
|
||
In [112]: s['1 day':'1 day 5 hours']
|
||
Out[112]:
|
||
1 days 00:00:00 0
|
||
1 days 01:00:00 1
|
||
1 days 02:00:00 2
|
||
1 days 03:00:00 3
|
||
1 days 04:00:00 4
|
||
1 days 05:00:00 5
|
||
Freq: H, dtype: int64
|
||
```
|
||
|
||
### TimedeltaIndex 运算
|
||
|
||
`TimedeltaIndex` 与 `DatetimeIndex` 运算可以保留 `NaT` 值:
|
||
|
||
``` python
|
||
In [113]: tdi = pd.TimedeltaIndex(['1 days', pd.NaT, '2 days'])
|
||
|
||
In [114]: tdi.to_list()
|
||
Out[114]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]
|
||
|
||
In [115]: dti = pd.date_range('20130101', periods=3)
|
||
|
||
In [116]: dti.to_list()
|
||
Out[116]:
|
||
[Timestamp('2013-01-01 00:00:00', freq='D'),
|
||
Timestamp('2013-01-02 00:00:00', freq='D'),
|
||
Timestamp('2013-01-03 00:00:00', freq='D')]
|
||
|
||
In [117]: (dti + tdi).to_list()
|
||
Out[117]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]
|
||
|
||
In [118]: (dti - tdi).to_list()
|
||
Out[118]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]
|
||
```
|
||
|
||
### 转换
|
||
|
||
与 `Series` 频率转换类似,可以把 `TimedeltaIndex` 转换为其它索引。
|
||
|
||
``` python
|
||
In [119]: tdi / np.timedelta64(1, 's')
|
||
Out[119]: Float64Index([86400.0, nan, 172800.0], dtype='float64')
|
||
|
||
In [120]: tdi.astype('timedelta64[s]')
|
||
Out[120]: Float64Index([86400.0, nan, 172800.0], dtype='float64')
|
||
```
|
||
|
||
与标量操作类似,会返回**不同**类型的索引。
|
||
|
||
``` python
|
||
# 时间差与日期相加,结果为日期型索引(DatetimeIndex)
|
||
In [121]: tdi + pd.Timestamp('20130101')
|
||
Out[121]: DatetimeIndex(['2013-01-02', 'NaT', '2013-01-03'], dtype='datetime64[ns]', freq=None)
|
||
|
||
# 日期与时间戳相减,结果为日期型数据(Timestamp)
|
||
# note that trying to subtract a date from a Timedelta will raise an exception
|
||
In [122]: (pd.Timestamp('20130101') - tdi).to_list()
|
||
Out[122]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2012-12-30 00:00:00')]
|
||
|
||
# 时间差与时间差相加,结果还是时间差索引
|
||
In [123]: tdi + pd.Timedelta('10 days')
|
||
Out[123]: TimedeltaIndex(['11 days', NaT, '12 days'], dtype='timedelta64[ns]', freq=None)
|
||
|
||
# 除数是整数,则结果为时间差索引
|
||
In [124]: tdi / 2
|
||
Out[124]: TimedeltaIndex(['0 days 12:00:00', NaT, '1 days 00:00:00'], dtype='timedelta64[ns]', freq=None)
|
||
|
||
# 除数是时间差,则结果为 Float64Index
|
||
In [125]: tdi / tdi[0]
|
||
Out[125]: Float64Index([1.0, nan, 2.0], dtype='float64')
|
||
```
|
||
|
||
## 重采样
|
||
|
||
与[时间序列重采样](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-resampling)一样,`TimedeltaIndex` 也支持重采样。
|
||
|
||
``` python
|
||
In [126]: s.resample('D').mean()
|
||
Out[126]:
|
||
1 days 11.5
|
||
2 days 35.5
|
||
3 days 59.5
|
||
4 days 83.5
|
||
5 days 97.5
|
||
Freq: D, dtype: float64
|
||
``` |