mirror of
https://github.com/Estom/notes.git
synced 2026-02-07 12:35:20 +08:00
102 lines
3.1 KiB
Markdown
102 lines
3.1 KiB
Markdown
# 直方图
|
||
|
||
演示如何使用matplotlib绘制直方图。
|
||
|
||
```python
|
||
import matplotlib.pyplot as plt
|
||
import numpy as np
|
||
from matplotlib import colors
|
||
from matplotlib.ticker import PercentFormatter
|
||
|
||
# Fixing random state for reproducibility
|
||
np.random.seed(19680801)
|
||
```
|
||
|
||
## 生成数据并绘制简单的直方图
|
||
|
||
要生成一维直方图,我们只需要一个数字矢量。对于二维直方图,我们需要第二个矢量。我们将在下面生成两者,并显示每个向量的直方图。
|
||
|
||
```python
|
||
N_points = 100000
|
||
n_bins = 20
|
||
|
||
# Generate a normal distribution, center at x=0 and y=5
|
||
x = np.random.randn(N_points)
|
||
y = .4 * x + np.random.randn(100000) + 5
|
||
|
||
fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True)
|
||
|
||
# We can set the number of bins with the `bins` kwarg
|
||
axs[0].hist(x, bins=n_bins)
|
||
axs[1].hist(y, bins=n_bins)
|
||
```
|
||
|
||

|
||
|
||
## 更新直方图颜色
|
||
|
||
直方图方法(除其他外)返回一个修补程序对象。这使我们可以访问所绘制对象的特性。使用这个,我们可以根据自己的喜好编辑直方图。让我们根据每个条的y值更改其颜色。
|
||
|
||
```python
|
||
fig, axs = plt.subplots(1, 2, tight_layout=True)
|
||
|
||
# N is the count in each bin, bins is the lower-limit of the bin
|
||
N, bins, patches = axs[0].hist(x, bins=n_bins)
|
||
|
||
# We'll color code by height, but you could use any scalar
|
||
fracs = N / N.max()
|
||
|
||
# we need to normalize the data to 0..1 for the full range of the colormap
|
||
norm = colors.Normalize(fracs.min(), fracs.max())
|
||
|
||
# Now, we'll loop through our objects and set the color of each accordingly
|
||
for thisfrac, thispatch in zip(fracs, patches):
|
||
color = plt.cm.viridis(norm(thisfrac))
|
||
thispatch.set_facecolor(color)
|
||
|
||
# We can also normalize our inputs by the total number of counts
|
||
axs[1].hist(x, bins=n_bins, density=True)
|
||
|
||
# Now we format the y-axis to display percentage
|
||
axs[1].yaxis.set_major_formatter(PercentFormatter(xmax=1))
|
||
```
|
||
|
||

|
||
|
||
## 绘制二维直方图
|
||
|
||
要绘制二维直方图,只需两个长度相同的向量,对应于直方图的每个轴。
|
||
|
||
```python
|
||
fig, ax = plt.subplots(tight_layout=True)
|
||
hist = ax.hist2d(x, y)
|
||
```
|
||
|
||

|
||
|
||
## 自定义直方图
|
||
|
||
自定义2D直方图类似于1D情况,您可以控制可视组件,如存储箱大小或颜色规格化。
|
||
|
||
```python
|
||
fig, axs = plt.subplots(3, 1, figsize=(5, 15), sharex=True, sharey=True,
|
||
tight_layout=True)
|
||
|
||
# We can increase the number of bins on each axis
|
||
axs[0].hist2d(x, y, bins=40)
|
||
|
||
# As well as define normalization of the colors
|
||
axs[1].hist2d(x, y, bins=40, norm=colors.LogNorm())
|
||
|
||
# We can also define custom numbers of bins for each axis
|
||
axs[2].hist2d(x, y, bins=(80, 10), norm=colors.LogNorm())
|
||
|
||
plt.show()
|
||
```
|
||
|
||

|
||
|
||
## 下载这个示例
|
||
|
||
- [下载python源码: hist.py](https://matplotlib.org/_downloads/hist.py)
|
||
- [下载Jupyter notebook: hist.ipynb](https://matplotlib.org/_downloads/hist.ipynb) |