mirror of
https://github.com/happyflyer/wangdao-data-structure.git
synced 2026-02-03 02:24:39 +08:00
238 lines
2.9 KiB
Markdown
238 lines
2.9 KiB
Markdown
# 栈
|
|
|
|
## 1. 顺序栈
|
|
|
|
### 1.1. 定义
|
|
|
|
用顺序存储方式实现的栈。
|
|
|
|
```cpp
|
|
#define MaxSize 10
|
|
typedef struct
|
|
{
|
|
ElemType data[MaxSize];
|
|
int top; // 栈顶指针
|
|
} SqStack;
|
|
```
|
|
|
|
$MaxSize*sizeof(ElemType)+4B$
|
|
|
|
### 1.2. 初始化栈
|
|
|
|
```cpp
|
|
// 初始化栈
|
|
void InitStack(SqStack &S)
|
|
{
|
|
S.top = -1;
|
|
}
|
|
```
|
|
|
|
```cpp
|
|
// 判断栈空
|
|
bool StackEmpty(SqStack S)
|
|
{
|
|
return S.top == -1;
|
|
}
|
|
```
|
|
|
|
```cpp
|
|
// 判断栈满
|
|
bool StackFull(SqStack S)
|
|
{
|
|
return S.top == MaxSize - 1;
|
|
}
|
|
```
|
|
|
|
### 1.3. 进栈
|
|
|
|
```cpp
|
|
// 进栈
|
|
bool Push(SqStack &S, int x)
|
|
{
|
|
if (StackFull(S))
|
|
{
|
|
return false;
|
|
}
|
|
// S.top++;
|
|
// S.data[S.top] = x;
|
|
S.data[++S.top] = x;
|
|
return true;
|
|
}
|
|
```
|
|
|
|
### 1.4. 出栈
|
|
|
|
```cpp
|
|
// 出栈,数据还残留在内存中,只是逻辑上被删除了
|
|
bool Pop(SqStack &S, int &x)
|
|
{
|
|
if (StackEmpty(S))
|
|
{
|
|
return false;
|
|
}
|
|
// x = S.data[S.top];
|
|
// S.top--;
|
|
x = S.data[S.top--];
|
|
return true;
|
|
}
|
|
```
|
|
|
|
### 1.5. 获取栈顶元素
|
|
|
|
```cpp
|
|
// 读取栈顶元素
|
|
bool GetTop(SqStack &S, int &x)
|
|
{
|
|
if (StackEmpty(S))
|
|
{
|
|
return false;
|
|
}
|
|
x = S.data[S.top];
|
|
return true;
|
|
}
|
|
```
|
|
|
|
### 1.6. 另一种初始化栈的方式
|
|
|
|
```cpp
|
|
// 初始化栈
|
|
void InitStack(SqStack &S)
|
|
{
|
|
S.top = 0;
|
|
}
|
|
```
|
|
|
|
```cpp
|
|
// 判断栈空
|
|
bool StackEmpty(SqStack S)
|
|
{
|
|
return S.top == 0;
|
|
}
|
|
```
|
|
|
|
```cpp
|
|
// 判断栈满
|
|
bool StackFull(SqStack S)
|
|
{
|
|
return S.top == MaxSize;
|
|
}
|
|
```
|
|
|
|
### 1.7. 顺序栈的缺点
|
|
|
|
栈的大小不可改变。
|
|
|
|
### 1.8. 共享栈
|
|
|
|
两个栈共享同一片内存空间,两个栈从两边往中间增长。
|
|
|
|
```cpp
|
|
#define MaxSize 10
|
|
typedef struct
|
|
{
|
|
ElemType data[MaxSize];
|
|
int top0;
|
|
int top1;
|
|
} ShStack;
|
|
```
|
|
|
|
```cpp
|
|
// 初始化共享栈
|
|
void InitStack(ShStack &S)
|
|
{
|
|
S.top0 = -1;
|
|
S.top1 = MaxSize;
|
|
}
|
|
```
|
|
|
|
```cpp
|
|
// 判断栈满
|
|
bool StackFull(ShStack S)
|
|
{
|
|
return S.top0 + 1 == S.top1;
|
|
}
|
|
```
|
|
|
|
## 2. 链栈
|
|
|
|
### 2.1. 定义
|
|
|
|
```cpp
|
|
typedef struct LNode
|
|
{
|
|
ElemType data;
|
|
struct LNode *next;
|
|
} LNode, *LinkStack;
|
|
```
|
|
|
|
### 2.2. 初始化
|
|
|
|
```cpp
|
|
// 初始化一个链栈,带头结点
|
|
bool InitStack(LinkStack &S)
|
|
{
|
|
S = (LNode *)malloc(sizeof(LNode));
|
|
if (S == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
S->next = NULL;
|
|
return true;
|
|
}
|
|
```
|
|
|
|
```cpp
|
|
// 判断栈空
|
|
bool StackEmpty(LinkStack S)
|
|
{
|
|
return S->next == NULL;
|
|
}
|
|
```
|
|
|
|
### 2.3. 进栈
|
|
|
|
```cpp
|
|
// 进栈
|
|
bool Push(LinkStack &S, int x)
|
|
{
|
|
LNode *s = (LNode *)malloc(sizeof(LNode));
|
|
s->data = x;
|
|
s->next = S->next;
|
|
S->next = s;
|
|
return true;
|
|
}
|
|
```
|
|
|
|
### 2.4. 出栈
|
|
|
|
```cpp
|
|
// 出栈
|
|
bool Pop(LinkStack &S, int &x)
|
|
{
|
|
if (StackEmpty(S))
|
|
{
|
|
return false;
|
|
}
|
|
LNode *q = S->next;
|
|
x = q->data;
|
|
S->next = q->next;
|
|
free(q);
|
|
return true;
|
|
}
|
|
```
|
|
|
|
### 2.5. 获取栈顶元素
|
|
|
|
```cpp
|
|
// 读取栈顶元素
|
|
bool GetTop(LinkStack &S, int &x)
|
|
{
|
|
if (StackEmpty(S))
|
|
{
|
|
return false;
|
|
}
|
|
x = S->next->data;
|
|
return true;
|
|
}
|
|
```
|