mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-02 18:21:08 +08:00
Delete Book4_Ch10_Python_Codes directory
This commit is contained in:
committed by
GitHub
parent
639f1ed2f3
commit
23f13618ad
@@ -1,184 +0,0 @@
|
||||
|
||||
###############
|
||||
# Authored by Weisheng Jiang
|
||||
# Book 4 | From Basic Arithmetic to Machine Learning
|
||||
# Published and copyrighted by Tsinghua University Press
|
||||
# Beijing, China, 2022
|
||||
###############
|
||||
|
||||
# Bk4_Ch10_01.py
|
||||
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
# A copy from Seaborn
|
||||
iris = load_iris()
|
||||
|
||||
X = iris.data
|
||||
y = iris.target
|
||||
|
||||
feature_names = ['Sepal length, x1','Sepal width, x2',
|
||||
'Petal length, x3','Petal width, x4']
|
||||
|
||||
# Convert X array to dataframe
|
||||
X_df = pd.DataFrame(X, columns=feature_names)
|
||||
|
||||
#%% Original data, X
|
||||
|
||||
X = X_df.to_numpy();
|
||||
|
||||
# Gram matrix, G and orthogonal basis V
|
||||
|
||||
G = X.T@X
|
||||
D, V = np.linalg.eig(G)
|
||||
|
||||
#%%
|
||||
|
||||
def heatmap(Matrices,Titles,Ranges,Equal_tags):
|
||||
|
||||
M1 = Matrices[0]
|
||||
M2 = Matrices[1]
|
||||
M3 = Matrices[2]
|
||||
|
||||
Title_1 = Titles[0]
|
||||
Title_2 = Titles[1]
|
||||
Title_3 = Titles[2]
|
||||
|
||||
fig, axs = plt.subplots(1, 5, figsize=(12, 3))
|
||||
|
||||
plt.sca(axs[0])
|
||||
ax = sns.heatmap(M1,cmap='RdYlBu_r',
|
||||
vmin = Ranges[0][0],
|
||||
vmax = Ranges[0][1],
|
||||
cbar=False,
|
||||
xticklabels=False,
|
||||
yticklabels=False)
|
||||
|
||||
if Equal_tags[0] == True:
|
||||
ax.set_aspect("equal")
|
||||
|
||||
plt.title(Title_1)
|
||||
|
||||
plt.sca(axs[1])
|
||||
plt.title('=')
|
||||
plt.axis('off')
|
||||
|
||||
plt.sca(axs[2])
|
||||
ax = sns.heatmap(M2,cmap='RdYlBu_r',
|
||||
vmin = Ranges[1][0],
|
||||
vmax = Ranges[1][1],
|
||||
cbar=False,
|
||||
xticklabels=False,
|
||||
yticklabels=False)
|
||||
if Equal_tags[1] == True:
|
||||
ax.set_aspect("equal")
|
||||
plt.title(Title_2)
|
||||
|
||||
plt.sca(axs[3])
|
||||
plt.title('@')
|
||||
plt.axis('off')
|
||||
|
||||
plt.sca(axs[4])
|
||||
ax = sns.heatmap(M3,cmap='RdYlBu_r',
|
||||
vmin = Ranges[2][0],
|
||||
vmax = Ranges[2][1],
|
||||
cbar=False,
|
||||
xticklabels=False,
|
||||
yticklabels=False)
|
||||
|
||||
if Equal_tags[2] == True:
|
||||
ax.set_aspect("equal")
|
||||
plt.title(Title_3)
|
||||
|
||||
#%%
|
||||
|
||||
def plot_four_figs(X,v_j,idx):
|
||||
|
||||
# Fig 1: X@v_j = z_j
|
||||
|
||||
z_j = X@v_j
|
||||
Titles = ['$X$',
|
||||
'$v_' + str(idx) + '$',
|
||||
'$z_' + str(idx) + '$']
|
||||
|
||||
Ranges = [[-2,11],
|
||||
[-1,1],
|
||||
[-2,11]]
|
||||
|
||||
Equal_tags = [False,True,False]
|
||||
heatmap([X,v_j,z_j],Titles,Ranges,Equal_tags)
|
||||
|
||||
# Fig 2: z@v_j.T = X_j
|
||||
X_j = z_j@v_j.T
|
||||
Titles = ['$z_' + str(idx) + '$',
|
||||
'$v_' + str(idx) + '^T$',
|
||||
'$X_' + str(idx) + '$']
|
||||
|
||||
Ranges = [[-2,11],
|
||||
[-1,1],
|
||||
[-2,11]]
|
||||
|
||||
Equal_tags = [False,True,False]
|
||||
|
||||
heatmap([z_j,v_j.T,X_j],Titles,Ranges,Equal_tags)
|
||||
|
||||
# Fig 3: T_j = v_j@v_j.T
|
||||
T_j = v_j@v_j.T
|
||||
|
||||
Titles = ['$v_' + str(idx) + '$',
|
||||
'$v_' + str(idx) + '^T$',
|
||||
'$T_' + str(idx) + '$']
|
||||
|
||||
Ranges = [[-1,1],
|
||||
[-1,1],
|
||||
[-1,1]]
|
||||
|
||||
Equal_tags = [True,True,True]
|
||||
|
||||
heatmap([v_j,v_j.T,T_j],Titles,Ranges,Equal_tags)
|
||||
|
||||
|
||||
# Fig 4: X@T_j = X_j
|
||||
|
||||
T_j = X@T_j
|
||||
|
||||
Titles = ['$X$',
|
||||
'$T_' + str(idx) + '$',
|
||||
'$X_' + str(idx) + '$']
|
||||
|
||||
Ranges = [[-2,11],
|
||||
[-1,1],
|
||||
[-2,11]]
|
||||
|
||||
Equal_tags = [False,True,False]
|
||||
|
||||
heatmap([X,T_j,X_j],Titles,Ranges,Equal_tags)
|
||||
|
||||
|
||||
#%% First basis vector
|
||||
|
||||
v1 = V[:, 0].reshape((-1, 1))
|
||||
|
||||
plot_four_figs(X,v1,1)
|
||||
|
||||
#%% Second basis vector
|
||||
|
||||
v2 = V[:, 1].reshape((-1, 1))
|
||||
|
||||
plot_four_figs(X,v2,2)
|
||||
|
||||
#%% Third basis vector
|
||||
|
||||
v3 = V[:, 2].reshape((-1, 1))
|
||||
|
||||
plot_four_figs(X,v3,3)
|
||||
|
||||
#%% Fourth basis vector
|
||||
|
||||
v4 = V[:, 3].reshape((-1, 1))
|
||||
|
||||
plot_four_figs(X,v4,4)
|
||||
|
||||
@@ -1,131 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Sep 27 19:46:17 2022
|
||||
|
||||
@author: Work
|
||||
"""
|
||||
|
||||
|
||||
###############
|
||||
# Authored by Weisheng Jiang
|
||||
# Book 4 | From Basic Arithmetic to Machine Learning
|
||||
# Published and copyrighted by Tsinghua University Press
|
||||
# Beijing, China, 2022
|
||||
###############
|
||||
|
||||
|
||||
import streamlit as st
|
||||
import plotly.express as px
|
||||
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
|
||||
def bmatrix(a):
|
||||
"""Returns a LaTeX bmatrix
|
||||
|
||||
:a: numpy array
|
||||
:returns: LaTeX bmatrix as a string
|
||||
"""
|
||||
if len(a.shape) > 2:
|
||||
raise ValueError('bmatrix can at most display two dimensions')
|
||||
lines = str(a).replace('[', '').replace(']', '').splitlines()
|
||||
rv = [r'\begin{bmatrix}']
|
||||
rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines]
|
||||
rv += [r'\end{bmatrix}']
|
||||
return '\n'.join(rv)
|
||||
|
||||
|
||||
iris = load_iris()
|
||||
X = iris.data
|
||||
y = iris.target
|
||||
|
||||
feature_names = ['Sepal length, x1','Sepal width, x2',
|
||||
'Petal length, x3','Petal width, x4']
|
||||
|
||||
# Convert X array to dataframe
|
||||
X_df = pd.DataFrame(X, columns=feature_names)
|
||||
|
||||
#%% Original data, X
|
||||
|
||||
X = X_df.to_numpy();
|
||||
|
||||
# Gram matrix, G and orthogonal basis V
|
||||
|
||||
G = X.T@X
|
||||
D, V = np.linalg.eig(G)
|
||||
np.set_printoptions(suppress=True)
|
||||
D = np.diag(D)
|
||||
st.latex(r'G = X^T X = ' + bmatrix(G))
|
||||
st.latex(r'G = V \Lambda V^T')
|
||||
|
||||
st.latex(r'G = ' +
|
||||
bmatrix(np.round(V,2)) + '@' +
|
||||
bmatrix(np.round(D,2)) + '@' +
|
||||
bmatrix(np.round(V.T,2)))
|
||||
|
||||
st.write('Mapped data:')
|
||||
st.latex('Z = XV')
|
||||
|
||||
#%%
|
||||
|
||||
Z = X@V
|
||||
|
||||
df = pd.DataFrame(Z, columns = ['PC1','PC2','PC3','PC4'])
|
||||
|
||||
mapping_rule = {0: 'setosa', 1: 'versicolor', 2: 'virginica'}
|
||||
df.insert(4, "species", y)
|
||||
df['species'] = df['species'].map(mapping_rule)
|
||||
|
||||
#%%
|
||||
features = df.columns.to_list()[:-1]
|
||||
|
||||
#%% Table of mapped data
|
||||
|
||||
with st.expander('Mapped data'):
|
||||
st.write(df)
|
||||
|
||||
#%% Heatmap
|
||||
with st.expander('Heatmap'):
|
||||
fig_1 = px.imshow(df.iloc[:,0:4],
|
||||
color_continuous_scale='RdYlBu_r')
|
||||
st.plotly_chart(fig_1)
|
||||
|
||||
#%% 2D scatter plot
|
||||
|
||||
with st.sidebar:
|
||||
st.write('2D scatter plot')
|
||||
x_feature = st.radio('Horizontal axis',
|
||||
features)
|
||||
y_feature = st.radio('Vertical axis',
|
||||
features)
|
||||
|
||||
with st.expander('2D scatter plot'):
|
||||
fig_2 = px.scatter(df, x=x_feature, y=y_feature, color="species")
|
||||
st.plotly_chart(fig_2)
|
||||
|
||||
#%% 3D scatter plot
|
||||
with st.expander('3D scatter plot'):
|
||||
fig_3 = px.scatter_3d(df,
|
||||
x='PC1',
|
||||
y='PC2',
|
||||
z='PC3',
|
||||
color='species')
|
||||
st.plotly_chart(fig_3)
|
||||
|
||||
#%% Pairwise scatter plot
|
||||
with st.expander('Pairwise scatter plot'):
|
||||
fig_4 = px.scatter_matrix(df,
|
||||
dimensions=["PC1",
|
||||
"PC2",
|
||||
"PC3",
|
||||
"PC4"],
|
||||
color="species")
|
||||
st.plotly_chart(fig_4)
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user