Delete Book4_Ch10_Python_Codes directory

This commit is contained in:
Iris Series: Visualize Math -- From Arithmetic Basics to Machine Learning
2025-02-01 17:01:27 +08:00
committed by GitHub
parent 639f1ed2f3
commit 23f13618ad
2 changed files with 0 additions and 315 deletions

View File

@@ -1,184 +0,0 @@
###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
# Bk4_Ch10_01.py
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris
# A copy from Seaborn
iris = load_iris()
X = iris.data
y = iris.target
feature_names = ['Sepal length, x1','Sepal width, x2',
'Petal length, x3','Petal width, x4']
# Convert X array to dataframe
X_df = pd.DataFrame(X, columns=feature_names)
#%% Original data, X
X = X_df.to_numpy();
# Gram matrix, G and orthogonal basis V
G = X.T@X
D, V = np.linalg.eig(G)
#%%
def heatmap(Matrices,Titles,Ranges,Equal_tags):
M1 = Matrices[0]
M2 = Matrices[1]
M3 = Matrices[2]
Title_1 = Titles[0]
Title_2 = Titles[1]
Title_3 = Titles[2]
fig, axs = plt.subplots(1, 5, figsize=(12, 3))
plt.sca(axs[0])
ax = sns.heatmap(M1,cmap='RdYlBu_r',
vmin = Ranges[0][0],
vmax = Ranges[0][1],
cbar=False,
xticklabels=False,
yticklabels=False)
if Equal_tags[0] == True:
ax.set_aspect("equal")
plt.title(Title_1)
plt.sca(axs[1])
plt.title('=')
plt.axis('off')
plt.sca(axs[2])
ax = sns.heatmap(M2,cmap='RdYlBu_r',
vmin = Ranges[1][0],
vmax = Ranges[1][1],
cbar=False,
xticklabels=False,
yticklabels=False)
if Equal_tags[1] == True:
ax.set_aspect("equal")
plt.title(Title_2)
plt.sca(axs[3])
plt.title('@')
plt.axis('off')
plt.sca(axs[4])
ax = sns.heatmap(M3,cmap='RdYlBu_r',
vmin = Ranges[2][0],
vmax = Ranges[2][1],
cbar=False,
xticklabels=False,
yticklabels=False)
if Equal_tags[2] == True:
ax.set_aspect("equal")
plt.title(Title_3)
#%%
def plot_four_figs(X,v_j,idx):
# Fig 1: X@v_j = z_j
z_j = X@v_j
Titles = ['$X$',
'$v_' + str(idx) + '$',
'$z_' + str(idx) + '$']
Ranges = [[-2,11],
[-1,1],
[-2,11]]
Equal_tags = [False,True,False]
heatmap([X,v_j,z_j],Titles,Ranges,Equal_tags)
# Fig 2: z@v_j.T = X_j
X_j = z_j@v_j.T
Titles = ['$z_' + str(idx) + '$',
'$v_' + str(idx) + '^T$',
'$X_' + str(idx) + '$']
Ranges = [[-2,11],
[-1,1],
[-2,11]]
Equal_tags = [False,True,False]
heatmap([z_j,v_j.T,X_j],Titles,Ranges,Equal_tags)
# Fig 3: T_j = v_j@v_j.T
T_j = v_j@v_j.T
Titles = ['$v_' + str(idx) + '$',
'$v_' + str(idx) + '^T$',
'$T_' + str(idx) + '$']
Ranges = [[-1,1],
[-1,1],
[-1,1]]
Equal_tags = [True,True,True]
heatmap([v_j,v_j.T,T_j],Titles,Ranges,Equal_tags)
# Fig 4: X@T_j = X_j
T_j = X@T_j
Titles = ['$X$',
'$T_' + str(idx) + '$',
'$X_' + str(idx) + '$']
Ranges = [[-2,11],
[-1,1],
[-2,11]]
Equal_tags = [False,True,False]
heatmap([X,T_j,X_j],Titles,Ranges,Equal_tags)
#%% First basis vector
v1 = V[:, 0].reshape((-1, 1))
plot_four_figs(X,v1,1)
#%% Second basis vector
v2 = V[:, 1].reshape((-1, 1))
plot_four_figs(X,v2,2)
#%% Third basis vector
v3 = V[:, 2].reshape((-1, 1))
plot_four_figs(X,v3,3)
#%% Fourth basis vector
v4 = V[:, 3].reshape((-1, 1))
plot_four_figs(X,v4,4)

View File

@@ -1,131 +0,0 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 27 19:46:17 2022
@author: Work
"""
###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import streamlit as st
import plotly.express as px
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris
def bmatrix(a):
"""Returns a LaTeX bmatrix
:a: numpy array
:returns: LaTeX bmatrix as a string
"""
if len(a.shape) > 2:
raise ValueError('bmatrix can at most display two dimensions')
lines = str(a).replace('[', '').replace(']', '').splitlines()
rv = [r'\begin{bmatrix}']
rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines]
rv += [r'\end{bmatrix}']
return '\n'.join(rv)
iris = load_iris()
X = iris.data
y = iris.target
feature_names = ['Sepal length, x1','Sepal width, x2',
'Petal length, x3','Petal width, x4']
# Convert X array to dataframe
X_df = pd.DataFrame(X, columns=feature_names)
#%% Original data, X
X = X_df.to_numpy();
# Gram matrix, G and orthogonal basis V
G = X.T@X
D, V = np.linalg.eig(G)
np.set_printoptions(suppress=True)
D = np.diag(D)
st.latex(r'G = X^T X = ' + bmatrix(G))
st.latex(r'G = V \Lambda V^T')
st.latex(r'G = ' +
bmatrix(np.round(V,2)) + '@' +
bmatrix(np.round(D,2)) + '@' +
bmatrix(np.round(V.T,2)))
st.write('Mapped data:')
st.latex('Z = XV')
#%%
Z = X@V
df = pd.DataFrame(Z, columns = ['PC1','PC2','PC3','PC4'])
mapping_rule = {0: 'setosa', 1: 'versicolor', 2: 'virginica'}
df.insert(4, "species", y)
df['species'] = df['species'].map(mapping_rule)
#%%
features = df.columns.to_list()[:-1]
#%% Table of mapped data
with st.expander('Mapped data'):
st.write(df)
#%% Heatmap
with st.expander('Heatmap'):
fig_1 = px.imshow(df.iloc[:,0:4],
color_continuous_scale='RdYlBu_r')
st.plotly_chart(fig_1)
#%% 2D scatter plot
with st.sidebar:
st.write('2D scatter plot')
x_feature = st.radio('Horizontal axis',
features)
y_feature = st.radio('Vertical axis',
features)
with st.expander('2D scatter plot'):
fig_2 = px.scatter(df, x=x_feature, y=y_feature, color="species")
st.plotly_chart(fig_2)
#%% 3D scatter plot
with st.expander('3D scatter plot'):
fig_3 = px.scatter_3d(df,
x='PC1',
y='PC2',
z='PC3',
color='species')
st.plotly_chart(fig_3)
#%% Pairwise scatter plot
with st.expander('Pairwise scatter plot'):
fig_4 = px.scatter_matrix(df,
dimensions=["PC1",
"PC2",
"PC3",
"PC4"],
color="species")
st.plotly_chart(fig_4)