mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 02:24:03 +08:00
Add files via upload
This commit is contained in:
89
Book4_Ch13_Python_Codes/Bk4_Ch13_01.py
Normal file
89
Book4_Ch13_Python_Codes/Bk4_Ch13_01.py
Normal file
@@ -0,0 +1,89 @@
|
||||
|
||||
###############
|
||||
# Authored by Weisheng Jiang
|
||||
# Book 4 | From Basic Arithmetic to Machine Learning
|
||||
# Published and copyrighted by Tsinghua University Press
|
||||
# Beijing, China, 2022
|
||||
###############
|
||||
|
||||
# Bk4_Ch13_01.py
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
A = np.array([[1.25, -0.75],
|
||||
[-0.75, 1.25]])
|
||||
|
||||
xx1, xx2 = np.meshgrid(np.linspace(-8, 8, 9), np.linspace(-8, 8, 9))
|
||||
num_vecs = np.prod(xx1.shape);
|
||||
|
||||
thetas = np.linspace(0, 2*np.pi, num_vecs)
|
||||
|
||||
thetas = np.reshape(thetas, (-1, 9))
|
||||
thetas = np.flipud(thetas);
|
||||
|
||||
uu = np.cos(thetas);
|
||||
vv = np.sin(thetas);
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
ax.quiver(xx1,xx2,uu,vv,
|
||||
angles='xy', scale_units='xy',scale=1,
|
||||
edgecolor='none', facecolor= 'b')
|
||||
|
||||
plt.ylabel('$x_2$')
|
||||
plt.xlabel('$x_1$')
|
||||
plt.axis('scaled')
|
||||
ax.set_xlim([-10, 10])
|
||||
ax.set_ylim([-10, 10])
|
||||
ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
|
||||
ax.set_xticks(np.linspace(-10,10,11));
|
||||
ax.set_yticks(np.linspace(-10,10,11));
|
||||
plt.show()
|
||||
|
||||
# Matrix multiplication
|
||||
V = np.array([uu.flatten(),vv.flatten()]).T;
|
||||
W = V@A;
|
||||
|
||||
uu_new = np.reshape(W[:,0],(-1, 9));
|
||||
vv_new = np.reshape(W[:,1],(-1, 9));
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
ax.quiver(xx1,xx2,uu,vv,
|
||||
angles='xy', scale_units='xy',scale=1,
|
||||
edgecolor='none', facecolor= 'b')
|
||||
|
||||
ax.quiver(xx1,xx2,uu_new,vv_new,
|
||||
angles='xy', scale_units='xy',scale=1,
|
||||
edgecolor='none', facecolor= 'r')
|
||||
|
||||
plt.ylabel('$x_2$')
|
||||
plt.xlabel('$x_1$')
|
||||
plt.axis('scaled')
|
||||
ax.set_xlim([-10, 10])
|
||||
ax.set_ylim([-10, 10])
|
||||
ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
|
||||
ax.set_xticks(np.linspace(-10,10,11));
|
||||
ax.set_yticks(np.linspace(-10,10,11));
|
||||
plt.show()
|
||||
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.quiver(xx1*0,xx2*0,uu,vv,
|
||||
angles='xy', scale_units='xy',scale=1,
|
||||
edgecolor='none', facecolor= 'b')
|
||||
|
||||
ax.quiver(xx1*0,xx2*0,uu_new,vv_new,
|
||||
angles='xy', scale_units='xy',scale=1,
|
||||
edgecolor='none', facecolor= 'r')
|
||||
|
||||
plt.ylabel('$x_2$')
|
||||
plt.xlabel('$x_1$')
|
||||
plt.axis('scaled')
|
||||
ax.set_xlim([-2, 2])
|
||||
ax.set_ylim([-2, 2])
|
||||
ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
|
||||
ax.set_xticks(np.linspace(-2,2,5));
|
||||
ax.set_yticks(np.linspace(-2,2,5));
|
||||
plt.show()
|
||||
96
Book4_Ch13_Python_Codes/Bk4_Ch13_02.py
Normal file
96
Book4_Ch13_Python_Codes/Bk4_Ch13_02.py
Normal file
@@ -0,0 +1,96 @@
|
||||
|
||||
###############
|
||||
# Authored by Weisheng Jiang
|
||||
# Book 4 | From Basic Arithmetic to Machine Learning
|
||||
# Published and copyrighted by Tsinghua University Press
|
||||
# Beijing, China, 2022
|
||||
###############
|
||||
|
||||
# Bk4_Ch13_02.py
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def visualize(X_circle,X_vec,title_txt):
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
plt.plot(X_circle[0,:], X_circle[1,:],'k',
|
||||
linestyle = '--',
|
||||
linewidth = 0.5)
|
||||
|
||||
plt.quiver(0,0,X_vec[0,0],X_vec[1,0],
|
||||
angles='xy', scale_units='xy',scale=1,
|
||||
color = [0, 0.4392, 0.7529])
|
||||
|
||||
plt.quiver(0,0,X_vec[0,1],X_vec[1,1],
|
||||
angles='xy', scale_units='xy',scale=1,
|
||||
color = [1,0,0])
|
||||
|
||||
plt.axvline(x=0, color= 'k', zorder=0)
|
||||
plt.axhline(y=0, color= 'k', zorder=0)
|
||||
|
||||
plt.ylabel('$x_2$')
|
||||
plt.xlabel('$x_1$')
|
||||
|
||||
ax.set_aspect(1)
|
||||
ax.set_xlim([-2.5, 2.5])
|
||||
ax.set_ylim([-2.5, 2.5])
|
||||
ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
|
||||
ax.set_xticks(np.linspace(-2,2,5));
|
||||
ax.set_yticks(np.linspace(-2,2,5));
|
||||
plt.title(title_txt)
|
||||
plt.show()
|
||||
|
||||
|
||||
theta = np.linspace(0, 2*np.pi, 100)
|
||||
|
||||
circle_x1 = np.cos(theta)
|
||||
circle_x2 = np.sin(theta)
|
||||
|
||||
V_vec = np.array([[np.sqrt(2)/2, -np.sqrt(2)/2],
|
||||
[np.sqrt(2)/2, np.sqrt(2)/2]])
|
||||
|
||||
X_circle = np.array([circle_x1, circle_x2])
|
||||
|
||||
# plot original circle and two vectors
|
||||
visualize(X_circle,V_vec,'Original')
|
||||
|
||||
A = np.array([[1.25, -0.75],
|
||||
[-0.75, 1.25]])
|
||||
|
||||
# plot the transformation of A
|
||||
|
||||
visualize(A@X_circle, A@V_vec,'$A$')
|
||||
|
||||
|
||||
#%% Eigen deomposition
|
||||
|
||||
# A = V @ D @ V.T
|
||||
|
||||
lambdas, V = np.linalg.eig(A)
|
||||
|
||||
D = np.diag(np.flip(lambdas))
|
||||
V = V.T # reverse the order
|
||||
|
||||
print('=== LAMBDA ===')
|
||||
print(D)
|
||||
print('=== V ===')
|
||||
print(V)
|
||||
|
||||
# plot the transformation of V.T
|
||||
|
||||
visualize(V.T@X_circle, V.T@V_vec,'$V^T$')
|
||||
|
||||
# plot the transformation of D @ V.T
|
||||
|
||||
visualize(D@V.T@X_circle, D@V.T@V_vec,'$\u039BV^T$')
|
||||
|
||||
# plot the transformation of V @ D @ V.T
|
||||
|
||||
visualize(V@D@V.T@X_circle, V@D@V.T@V_vec,'$V\u039BV^T$')
|
||||
|
||||
# plot the transformation of A
|
||||
|
||||
visualize(A@X_circle, A@V_vec,'$A$')
|
||||
|
||||
BIN
Book4_Ch13_特征值分解__数学要素__从加减乘除到机器学习.pdf
Normal file
BIN
Book4_Ch13_特征值分解__数学要素__从加减乘除到机器学习.pdf
Normal file
Binary file not shown.
22
Book4_Ch14_Python_Codes/Bk4_Ch14_01.py
Normal file
22
Book4_Ch14_Python_Codes/Bk4_Ch14_01.py
Normal file
@@ -0,0 +1,22 @@
|
||||
|
||||
###############
|
||||
# Authored by Weisheng Jiang
|
||||
# Book 4 | From Basic Arithmetic to Machine Learning
|
||||
# Published and copyrighted by Tsinghua University Press
|
||||
# Beijing, China, 2022
|
||||
###############
|
||||
|
||||
# Bk4_Ch14_01.py
|
||||
|
||||
import numpy as np
|
||||
|
||||
A = np.matrix([[1.25, -0.75],
|
||||
[-0.75, 1.25]])
|
||||
|
||||
LAMBDA, V = np.linalg.eig(A)
|
||||
|
||||
B = V@np.diag(np.sqrt(LAMBDA))@np.linalg.inv(V)
|
||||
|
||||
A_reproduced = B@B
|
||||
|
||||
print(A_reproduced)
|
||||
53
Book4_Ch14_Python_Codes/Bk4_Ch14_02.py
Normal file
53
Book4_Ch14_Python_Codes/Bk4_Ch14_02.py
Normal file
@@ -0,0 +1,53 @@
|
||||
|
||||
###############
|
||||
# Authored by Weisheng Jiang
|
||||
# Book 4 | From Basic Arithmetic to Machine Learning
|
||||
# Published and copyrighted by Tsinghua University Press
|
||||
# Beijing, China, 2022
|
||||
###############
|
||||
|
||||
# Bk4_Ch14_02.py
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# transition matrix
|
||||
T = np.matrix([[0.7, 0.2],
|
||||
[0.3, 0.8]])
|
||||
|
||||
# steady state
|
||||
sstate = np.linalg.eig(T)[1][:,1]
|
||||
sstate = sstate/sstate.sum()
|
||||
print(sstate)
|
||||
|
||||
# initial states
|
||||
initial_x_array = np.array([[1, 0, 0.5, 0.4], # Chicken
|
||||
[0, 1, 0.5, 0.6]]) # Rabbit
|
||||
|
||||
num_iterations = 10;
|
||||
|
||||
for i in np.arange(0,4):
|
||||
|
||||
initial_x = initial_x_array[:,i][:, None]
|
||||
|
||||
x_i = np.zeros_like(initial_x)
|
||||
x_i = initial_x
|
||||
X = initial_x.T;
|
||||
|
||||
# matrix power through iterations
|
||||
|
||||
for x in np.arange(0,num_iterations):
|
||||
x_i = T@x_i;
|
||||
X = np.concatenate([X, x_i.T],axis = 0)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
itr = np.arange(0,num_iterations+1);
|
||||
plt.plot(itr,X[:,0],marker = 'x',color = (1,0,0))
|
||||
plt.plot(itr,X[:,1],marker = 'x',color = (0,0.6,1))
|
||||
|
||||
ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
|
||||
ax.set_xlim(0, num_iterations)
|
||||
ax.set_ylim(0, 1)
|
||||
ax.set_xlabel('Iteration, k')
|
||||
ax.set_ylabel('State')
|
||||
106
Book4_Ch14_Python_Codes/Bk4_Ch14_03.py
Normal file
106
Book4_Ch14_Python_Codes/Bk4_Ch14_03.py
Normal file
@@ -0,0 +1,106 @@
|
||||
|
||||
###############
|
||||
# Authored by Weisheng Jiang
|
||||
# Book 4 | From Basic Arithmetic to Machine Learning
|
||||
# Published and copyrighted by Tsinghua University Press
|
||||
# Beijing, China, 2022
|
||||
###############
|
||||
|
||||
# Bk4_Ch14_03.py
|
||||
|
||||
import sympy
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from numpy import linalg as L
|
||||
|
||||
|
||||
def mesh_circ(c1, c2, r, num):
|
||||
|
||||
theta = np.linspace(0, 2*np.pi, num)
|
||||
r = np.linspace(0,r, num)
|
||||
theta,r = np.meshgrid(theta,r)
|
||||
xx1 = np.cos(theta)*r + c1
|
||||
xx2 = np.sin(theta)*r + c2
|
||||
|
||||
return xx1, xx2
|
||||
|
||||
|
||||
#define symbolic vars, function
|
||||
x1,x2 = sympy.symbols('x1 x2')
|
||||
|
||||
A = np.array([[0.5, -0.5],
|
||||
[-0.5, 0.5]])
|
||||
|
||||
Lambda, V = L.eig(A)
|
||||
|
||||
x = np.array([[x1,x2]]).T
|
||||
|
||||
f_x = x.T@A@x
|
||||
f_x = f_x[0][0]
|
||||
|
||||
f_x_fcn = sympy.lambdify([x1,x2],f_x)
|
||||
|
||||
xx1, xx2 = mesh_circ(0, 0, 1, 50)
|
||||
|
||||
ff_x = f_x_fcn(xx1,xx2)
|
||||
|
||||
if Lambda[1] > 0:
|
||||
levels = np.linspace(0,Lambda[0],21)
|
||||
else:
|
||||
levels = np.linspace(Lambda[1],Lambda[0],21)
|
||||
|
||||
t = np.linspace(0,np.pi*2,100)
|
||||
|
||||
# 2D visualization
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
ax.plot(np.cos(t), np.sin(t), color = 'k')
|
||||
|
||||
cs = plt.contourf(xx1, xx2, ff_x,
|
||||
levels=levels, cmap = 'RdYlBu_r')
|
||||
plt.show()
|
||||
ax.set_aspect('equal')
|
||||
ax.xaxis.set_ticks([])
|
||||
ax.yaxis.set_ticks([])
|
||||
ax.set_xlabel('$x_1$')
|
||||
ax.set_ylabel('$x_2$')
|
||||
ax.set_xlim(-1,1)
|
||||
ax.set_ylim(-1,1)
|
||||
clb = fig.colorbar(cs, ax=ax)
|
||||
clb.set_ticks(levels)
|
||||
|
||||
#%% 3D surface of f(x1,x2)
|
||||
|
||||
x1_ = np.linspace(-1.2,1.2,31)
|
||||
x2_ = np.linspace(-1.2,1.2,31)
|
||||
|
||||
xx1_fine, xx2_fine = np.meshgrid(x1_,x2_)
|
||||
|
||||
ff_x_fine = f_x_fcn(xx1_fine,xx2_fine)
|
||||
|
||||
f_circle = f_x_fcn(np.cos(t), np.sin(t))
|
||||
|
||||
# 3D visualization
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax = plt.axes(projection='3d')
|
||||
|
||||
ax.plot(np.cos(t), np.sin(t), f_circle, color = 'k')
|
||||
# circle projected to f(x1,x2)
|
||||
|
||||
ax.plot_wireframe(xx1_fine,xx2_fine,ff_x_fine,
|
||||
color = [0.8,0.8,0.8],
|
||||
linewidth = 0.25)
|
||||
|
||||
ax.contour3D(xx1_fine,xx2_fine,ff_x_fine,15,
|
||||
cmap = 'RdYlBu_r')
|
||||
|
||||
ax.view_init(elev=30, azim=60)
|
||||
ax.xaxis.set_ticks([])
|
||||
ax.yaxis.set_ticks([])
|
||||
ax.zaxis.set_ticks([])
|
||||
ax.set_xlim(xx1_fine.min(),xx1_fine.max())
|
||||
ax.set_ylim(xx2_fine.min(),xx2_fine.max())
|
||||
plt.tight_layout()
|
||||
ax.set_proj_type('ortho')
|
||||
plt.show()
|
||||
70
Book4_Ch14_Python_Codes/Bk4_Ch14_04.py
Normal file
70
Book4_Ch14_Python_Codes/Bk4_Ch14_04.py
Normal file
@@ -0,0 +1,70 @@
|
||||
|
||||
###############
|
||||
# Authored by Weisheng Jiang
|
||||
# Book 4 | From Basic Arithmetic to Machine Learning
|
||||
# Published and copyrighted by Tsinghua University Press
|
||||
# Beijing, China, 2022
|
||||
###############
|
||||
|
||||
# Bk4_Ch14_04.py
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
theta = np.deg2rad(30)
|
||||
|
||||
r = 0.8 # 1.2, scaling factor
|
||||
|
||||
R = np.array([[np.cos(theta), -np.sin(theta)],
|
||||
[np.sin(theta), np.cos(theta)]])
|
||||
|
||||
S = np.array([[r, 0],
|
||||
[0, r]])
|
||||
|
||||
A = R@S
|
||||
|
||||
# A = np.array([[1, -1],
|
||||
# [1, 1]])
|
||||
|
||||
Lamb, V = np.linalg.eig(A)
|
||||
|
||||
theta_array = np.arange(0,np.pi*2,np.pi*2/18)
|
||||
|
||||
|
||||
colors = plt.cm.rainbow(np.linspace(0,1,len(theta_array)))
|
||||
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
for j, theat_i in enumerate(theta_array):
|
||||
|
||||
# initial point
|
||||
x = np.array([[5*np.cos(theat_i)],
|
||||
[5*np.sin(theat_i)]])
|
||||
|
||||
plt.plot(x[0],x[1],
|
||||
marker = 'x',color = colors_j,
|
||||
markersize = 15)
|
||||
# plot the initial point
|
||||
|
||||
x_array = x
|
||||
|
||||
for i in np.arange(20):
|
||||
|
||||
x = A@x
|
||||
x_array = np.column_stack((x_array,x))
|
||||
|
||||
|
||||
colors_j = colors[j,:]
|
||||
plt.plot(x_array[0,:],x_array[1,:],
|
||||
marker = '.',color = colors_j)
|
||||
|
||||
|
||||
plt.axis('scaled')
|
||||
|
||||
ax.spines['top'].set_visible(False)
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['bottom'].set_visible(False)
|
||||
ax.spines['left'].set_visible(False)
|
||||
ax.axvline(x=0,color = 'k')
|
||||
ax.axhline(y=0,color = 'k')
|
||||
BIN
Book4_Ch14_深入特征值分解__数学要素__从加减乘除到机器学习.pdf
Normal file
BIN
Book4_Ch14_深入特征值分解__数学要素__从加减乘除到机器学习.pdf
Normal file
Binary file not shown.
Reference in New Issue
Block a user