Add files via upload

This commit is contained in:
Visualize-ML
2022-09-29 08:25:05 -04:00
committed by GitHub
parent ac32dd7d6b
commit f2e924bf00
14 changed files with 756 additions and 49 deletions

View File

@@ -9,8 +9,8 @@
# Bk4_Ch4_15.py
import numpy as np
A = np.array([[3, 1],
[2, 4]])
A = np.array([[4, 2],
[1, 3]])
# calculate determinant of A
det_A = np.linalg.det(A)

View File

@@ -0,0 +1,129 @@
###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import plotly.graph_objects as go
import numpy as np
from plotly.subplots import make_subplots
import streamlit as st
def bmatrix(a):
"""Returns a LaTeX bmatrix
:a: numpy array
:returns: LaTeX bmatrix as a string
"""
if len(a.shape) > 2:
raise ValueError('bmatrix can at most display two dimensions')
lines = str(a).replace('[', '').replace(']', '').splitlines()
rv = [r'\begin{bmatrix}']
rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines]
rv += [r'\end{bmatrix}']
return '\n'.join(rv)
n = m = 20
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.035)
xv = []
yv = []
for k in range(-n, n+1):
xv.extend([k, k, np.nan])
yv.extend([-m, m, np.nan])
lw= 1 #line_width
fig.add_trace(go.Scatter(x=xv, y=yv, mode="lines", line_width=lw,
line_color = 'red'), 1, 1)
#set up the lists of horizontal line x and y-end coordinates
xh=[]
yh=[]
for k in range(-m, m+1):
xh.extend([-m, m, np.nan])
yh.extend([k, k, np.nan])
fig.add_trace(go.Scatter(x=xh, y=yh, mode="lines", line_width=lw,
line_color = 'blue'), 1, 1)
with st.sidebar:
st.latex(r'''
A = \begin{bmatrix}
a & b\\
c & d
\end{bmatrix}''')
a = st.slider('a',-2.0, 2.0, step = 0.1, value = 1.0)
b = st.slider('b',-2.0, 2.0, step = 0.1, value = 0.0)
c = st.slider('c',-2.0, 2.0, step = 0.1, value = 0.0)
d = st.slider('c',-2.0, 2.0, step = 0.1, value = 1.0)
theta = np.pi/6
A = np.array([[a, b],
[c, d]], dtype=float)
#get only the coordinates from -3 to 3
# X = np.array(xv[6:-6])
# Y = np.array(yv[6:-6])
X = np.array(xv)
Y = np.array(yv)
# transform by T the vector of coordinates [x, y]^T where the vector runs over the columns of np.stack((X, Y))
Txvyv = A@np.stack((X, Y)) #transform by T the vertical lines
# X = np.array(xh[6:-6])
# Y = np.array(yh[6:-6])
X = np.array(xh)
Y = np.array(yh)
Txhyh = A@np.stack((X, Y))# #transform by T the horizontal lines
st.latex(r'A = ' + bmatrix(A))
a1 = A[:,0].reshape((-1, 1))
a2 = A[:,1].reshape((-1, 1))
st.latex(r'''
a_1 = Ae_1 = ''' + bmatrix(A) +
'e_1 = ' + bmatrix(a1)
)
st.latex(r'''
a_2 = Ae_2 = ''' + bmatrix(A) +
'e_2 = ' + bmatrix(a2)
)
st.latex(r'\begin{vmatrix} A \end{vmatrix} = ' + str(np.linalg.det(A)))
square_x = np.array([0, 1, 1, 0])
square_y = np.array([0, 0, 1, 1])
square_array = np.stack((square_x, square_y))
fig.add_trace(go.Scatter(x=square_x, y=square_y,
fill="toself", line_color='orange'), 1, 1)
A_times_square_array = A@square_array
fig.add_trace(go.Scatter(x=A_times_square_array[0,:],
y=A_times_square_array[1,:],
fill="toself", line_color='orange'), 1, 2)
fig.add_trace(go.Scatter(x=Txvyv[0], y=Txvyv[1],
mode="lines", line_width=lw,
line_color = 'blue'), 1, 2)
fig.add_trace(go.Scatter(x=Txhyh[0], y=Txhyh[1],
mode="lines", line_width=lw,
line_color = 'red'), 1, 2)
fig.update_xaxes(range=[-4, 4])
fig.update_yaxes(range=[-4, 4])
fig.update_layout(width=800, height=500, showlegend=False, template="none",
plot_bgcolor="white", yaxis2_showgrid=False, xaxis2_showgrid=False)
st.plotly_chart(fig)

View File

@@ -1,61 +1,116 @@
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 12 21:19:47 2022
@author: Work
"""
###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import pandas as pd
import plotly.graph_objs as go
import streamlit as st
import plotly.graph_objects as go
import numpy as np
from plotly.subplots import make_subplots
import streamlit as st
def bmatrix(a):
"""Returns a LaTeX bmatrix
:a: numpy array
:returns: LaTeX bmatrix as a string
"""
if len(a.shape) > 2:
raise ValueError('bmatrix can at most display two dimensions')
lines = str(a).replace('[', '').replace(']', '').splitlines()
rv = [r'\begin{bmatrix}']
rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines]
rv += [r'\end{bmatrix}']
return '\n'.join(rv)
n = m = 20
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.035)
xv = []
yv = []
for k in range(-n, n+1):
xv.extend([k, k, np.nan])
yv.extend([-m, m, np.nan])
lw= 1 #line_width
fig.add_trace(go.Scatter(x=xv, y=yv, mode="lines", line_width=lw,
line_color = 'red'), 1, 1)
#set up the lists of horizontal line x and y-end coordinates
xh=[]
yh=[]
for k in range(-m, m+1):
xh.extend([-m, m, np.nan])
yh.extend([k, k, np.nan])
fig.add_trace(go.Scatter(x=xh, y=yh, mode="lines", line_width=lw,
line_color = 'blue'), 1, 1)
with st.sidebar:
num = st.slider('Number of points for each dimension',
max_value = 20,
min_value = 10,
step = 1)
x1 = np.linspace(0,1,num)
x2 = x1
x3 = x1
st.latex(r'''
A = \begin{bmatrix}
a & b\\
c & d
\end{bmatrix}''')
a = st.slider('a',-2.0, 2.0, step = 0.1, value = 1.0)
b = st.slider('b',-2.0, 2.0, step = 0.1, value = 0.0)
c = st.slider('c',-2.0, 2.0, step = 0.1, value = 0.0)
d = st.slider('c',-2.0, 2.0, step = 0.1, value = 1.0)
xx1,xx2,xx3 = np.meshgrid(x1,x2,x3)
theta = np.pi/6
A = np.array([[a, b],
[c, d]], dtype=float)
x1_ = xx1.ravel()
x2_ = xx2.ravel()
x3_ = xx3.ravel()
#get only the coordinates from -3 to 3
# X = np.array(xv[6:-6])
# Y = np.array(yv[6:-6])
#%%
df = pd.DataFrame({'X': x1_,
'Y': x2_,
'Z': x3_,
'R': (x1_*256).round(),
'G': (x2_*256).round(),
'B': (x3_*256).round()})
X = np.array(xv)
Y = np.array(yv)
trace = go.Scatter3d(x=df.X,
y=df.Y,
z=df.Z,
mode='markers',
marker=dict(size=3,
color=['rgb({},{},{})'.format(r,g,b)
for r,g,b in
zip(df.R.values, df.G.values, df.B.values)],
opacity=0.9,))
# transform by T the vector of coordinates [x, y]^T where the vector runs over the columns of np.stack((X, Y))
Txvyv = A@np.stack((X, Y)) #transform by T the vertical lines
data = [trace]
# X = np.array(xh[6:-6])
# Y = np.array(yh[6:-6])
layout = go.Layout(margin=dict(l=0,
r=0,
b=0,
t=0),
scene = dict(
xaxis = dict(title='e_1'),
yaxis = dict(title='e_2'),
zaxis = dict(title='e_3'),),
)
X = np.array(xh)
Y = np.array(yh)
fig = go.Figure(data=data, layout=layout)
Txhyh = A@np.stack((X, Y))# #transform by T the horizontal lines
st.plotly_chart(fig)
st.latex(bmatrix(A))
a1 = A[:,0].reshape((-1, 1))
a2 = A[:,1].reshape((-1, 1))
st.latex(r'''
a_1 = Ae_1 = ''' + bmatrix(A) +
'e_1 = ' + bmatrix(a1)
)
st.latex(r'''
a_2 = Ae_2 = ''' + bmatrix(A) +
'e_2 = ' + bmatrix(a2)
)
fig.add_trace(go.Scatter(x=Txvyv[0], y=Txvyv[1],
mode="lines", line_width=lw,
line_color = 'blue'), 1, 2)
fig.add_trace(go.Scatter(x=Txhyh[0], y=Txhyh[1],
mode="lines", line_width=lw,
line_color = 'red'), 1, 2)
fig.update_xaxes(range=[-4, 4])
fig.update_yaxes(range=[-4, 4])
fig.update_layout(width=800, height=500, showlegend=False, template="none",
plot_bgcolor="white", yaxis2_showgrid=False, xaxis2_showgrid=False)
st.plotly_chart(fig)

View File

@@ -0,0 +1,61 @@
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 12 21:19:47 2022
@author: Work
"""
import pandas as pd
import plotly.graph_objs as go
import streamlit as st
import numpy as np
with st.sidebar:
num = st.slider('Number of points for each dimension',
max_value = 20,
min_value = 10,
step = 1)
x1 = np.linspace(0,1,num)
x2 = x1
x3 = x1
xx1,xx2,xx3 = np.meshgrid(x1,x2,x3)
x1_ = xx1.ravel()
x2_ = xx2.ravel()
x3_ = xx3.ravel()
#%%
df = pd.DataFrame({'X': x1_,
'Y': x2_,
'Z': x3_,
'R': (x1_*256).round(),
'G': (x2_*256).round(),
'B': (x3_*256).round()})
trace = go.Scatter3d(x=df.X,
y=df.Y,
z=df.Z,
mode='markers',
marker=dict(size=3,
color=['rgb({},{},{})'.format(r,g,b)
for r,g,b in
zip(df.R.values, df.G.values, df.B.values)],
opacity=0.9,))
data = [trace]
layout = go.Layout(margin=dict(l=0,
r=0,
b=0,
t=0),
scene = dict(
xaxis = dict(title='e_1'),
yaxis = dict(title='e_2'),
zaxis = dict(title='e_3'),),
)
fig = go.Figure(data=data, layout=layout)
st.plotly_chart(fig)

View File

@@ -0,0 +1,131 @@
###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import plotly.graph_objects as go
import numpy as np
from plotly.subplots import make_subplots
import streamlit as st
def bmatrix(a):
"""Returns a LaTeX bmatrix
:a: numpy array
:returns: LaTeX bmatrix as a string
"""
if len(a.shape) > 2:
raise ValueError('bmatrix can at most display two dimensions')
lines = str(a).replace('[', '').replace(']', '').splitlines()
rv = [r'\begin{bmatrix}']
rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines]
rv += [r'\end{bmatrix}']
return '\n'.join(rv)
n = m = 20
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.035)
xv = []
yv = []
for k in range(-n, n+1):
xv.extend([k, k, np.nan])
yv.extend([-m, m, np.nan])
lw= 1 #line_width
fig.add_trace(go.Scatter(x=xv, y=yv, mode="lines", line_width=lw,
line_color = 'red'), 1, 1)
#set up the lists of horizontal line x and y-end coordinates
xh=[]
yh=[]
for k in range(-m, m+1):
xh.extend([-m, m, np.nan])
yh.extend([k, k, np.nan])
fig.add_trace(go.Scatter(x=xh, y=yh, mode="lines", line_width=lw,
line_color = 'blue'), 1, 1)
with st.sidebar:
st.latex(r'''
A = \begin{bmatrix}
a & b\\
c & d
\end{bmatrix}''')
a = st.slider('a',-2.0, 2.0, step = 0.1, value = 1.0)
b = st.slider('b',-2.0, 2.0, step = 0.1, value = 0.0)
c = st.slider('c',-2.0, 2.0, step = 0.1, value = 0.0)
d = st.slider('c',-2.0, 2.0, step = 0.1, value = 1.0)
theta = np.pi/6
A = np.array([[a, b],
[c, d]], dtype=float)
#get only the coordinates from -3 to 3
# X = np.array(xv[6:-6])
# Y = np.array(yv[6:-6])
X = np.array(xv)
Y = np.array(yv)
# transform by T the vector of coordinates [x, y]^T where the vector runs over the columns of np.stack((X, Y))
Txvyv = A@np.stack((X, Y)) #transform by T the vertical lines
# X = np.array(xh[6:-6])
# Y = np.array(yh[6:-6])
X = np.array(xh)
Y = np.array(yh)
Txhyh = A@np.stack((X, Y))# #transform by T the horizontal lines
st.latex(r'A = ' + bmatrix(A))
a1 = A[:,0].reshape((-1, 1))
a2 = A[:,1].reshape((-1, 1))
st.latex(r'''
a_1 = Ae_1 = ''' + bmatrix(A) +
'e_1 = ' + bmatrix(a1)
)
st.latex(r'''
a_2 = Ae_2 = ''' + bmatrix(A) +
'e_2 = ' + bmatrix(a2)
)
st.latex(r'\begin{vmatrix} A \end{vmatrix} = ' + str(np.linalg.det(A)))
theta_array = np.linspace(0, 2*np.pi, 101)
circle_x = np.cos(theta_array)
circle_y = np.sin(theta_array)
circle_array = np.stack((circle_x, circle_y))
fig.add_trace(go.Scatter(x=circle_x, y=circle_y,
fill="toself", line_color='orange'), 1, 1)
A_times_circle_array = A@circle_array
fig.add_trace(go.Scatter(x=A_times_circle_array[0,:],
y=A_times_circle_array[1,:],
fill="toself", line_color='orange'), 1, 2)
fig.add_trace(go.Scatter(x=Txvyv[0], y=Txvyv[1],
mode="lines", line_width=lw,
line_color = 'blue'), 1, 2)
fig.add_trace(go.Scatter(x=Txhyh[0], y=Txhyh[1],
mode="lines", line_width=lw,
line_color = 'red'), 1, 2)
fig.update_xaxes(range=[-4, 4])
fig.update_yaxes(range=[-4, 4])
fig.update_layout(width=800, height=500, showlegend=False, template="none",
plot_bgcolor="white", yaxis2_showgrid=False, xaxis2_showgrid=False)
st.plotly_chart(fig)

View File

@@ -0,0 +1,122 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 27 19:46:17 2022
@author: Work
"""
###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import streamlit as st
import plotly.express as px
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris
def bmatrix(a):
"""Returns a LaTeX bmatrix
:a: numpy array
:returns: LaTeX bmatrix as a string
"""
if len(a.shape) > 2:
raise ValueError('bmatrix can at most display two dimensions')
lines = str(a).replace('[', '').replace(']', '').splitlines()
rv = [r'\begin{bmatrix}']
rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines]
rv += [r'\end{bmatrix}']
return '\n'.join(rv)
# A copy from Seaborn
iris = load_iris()
X = iris.data
y = iris.target
feature_names = ['Sepal length, x1','Sepal width, x2',
'Petal length, x3','Petal width, x4']
# Convert X array to dataframe
X_df = pd.DataFrame(X, columns=feature_names)
#%% Original data, X
X = X_df.to_numpy();
# Gram matrix, G and orthogonal basis V
G = X.T@X
D, V = np.linalg.eig(G)
np.set_printoptions(suppress=True)
D = np.diag(D)
st.latex(r'G = X^T X = ' + bmatrix(G))
st.latex(r'G = V \Lambda V^T')
st.latex(r'G = ' +
bmatrix(np.round(V,2)) + '@' +
bmatrix(np.round(D,2)) + '@' +
bmatrix(np.round(V.T,2)))
#%%
Z = X@V
df = pd.DataFrame(Z, columns = ['PC1','PC2','PC3','PC4'])
mapping_rule = {0: 'setosa', 1: 'versicolor', 2: 'virginica'}
df.insert(4, "species", y)
df['species'] = df['species'].map(mapping_rule)
#%%
features = df.columns.to_list()[:-1]
with st.sidebar:
st.write('2D scatter plot')
x_feature = st.radio('Horizontal axis',
features)
y_feature = st.radio('Vertical axis',
features)
# Heatmap
with st.expander('Heatmap'):
fig_1 = px.imshow(df.iloc[:,0:4],
color_continuous_scale='RdYlBu_r')
st.plotly_chart(fig_1)
# 2D scatter plot
with st.expander('2D scatter plot'):
fig_2 = px.scatter(df, x=x_feature, y=y_feature, color="species")
st.plotly_chart(fig_2)
# 3D scatter plot
with st.expander('3D scatter plot'):
fig_3 = px.scatter_3d(df,
x='PC1',
y='PC2',
z='PC3',
color='species')
st.plotly_chart(fig_3)
# Pairwise scatter plot
with st.expander('Pairwise scatter plot'):
fig_4 = px.scatter_matrix(df,
dimensions=["PC1",
"PC2",
"PC3",
"PC4"],
color="species")
st.plotly_chart(fig_4)

View File

@@ -0,0 +1,90 @@
###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import streamlit as st
import numpy as np
import plotly.express as px
import pandas as pd
def bmatrix(a):
"""Returns a LaTeX bmatrix
:a: numpy array
:returns: LaTeX bmatrix as a string
"""
if len(a.shape) > 2:
raise ValueError('bmatrix can at most display two dimensions')
lines = str(a).replace('[', '').replace(']', '').splitlines()
rv = [r'\begin{bmatrix}']
rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines]
rv += [r'\end{bmatrix}']
return '\n'.join(rv)
with st.sidebar:
st.latex(r'''
A = \begin{bmatrix}
a & b\\
c & d
\end{bmatrix}''')
a = st.slider('a',-2.0, 2.0, step = 0.1, value = 1.0)
b = st.slider('b',-2.0, 2.0, step = 0.1, value = 0.0)
c = st.slider('c',-2.0, 2.0, step = 0.1, value = 0.0)
d = st.slider('d',-2.0, 2.0, step = 0.1, value = 1.0)
#%%
x1_ = np.linspace(-1, 1, 11)
x2_ = np.linspace(-1, 1, 11)
xx1,xx2 = np.meshgrid(x1_, x2_)
X = np.column_stack((xx1.flatten(), xx2.flatten()))
# st.write(X)
A = np.array([[a, b],
[c, d]])
X = X@A
# st.write(len(X))
#%%
color_array = np.linspace(0,1,len(X))
# st.write(color_array)
X = np.column_stack((X, color_array))
df = pd.DataFrame(X, columns=['z1','z2', 'color'])
#%% Scatter
st.latex(bmatrix(A))
fig = px.scatter(df,
x="z1",
y="z2",
color='color',
color_continuous_scale = 'rainbow')
fig.update_layout(
autosize=False,
width=500,
height=500)
fig.add_hline(y=0, line_color = 'black')
fig.add_vline(x=0, line_color = 'black')
fig.update_xaxes(range=[-3, 3])
fig.update_yaxes(range=[-3, 3])
fig.update_coloraxes(showscale=False)
st.plotly_chart(fig)

View File

@@ -0,0 +1,119 @@
###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import plotly.graph_objects as go
import streamlit as st
import numpy as np
import plotly.express as px
import pandas as pd
import sympy
def bmatrix(a):
"""Returns a LaTeX bmatrix
:a: numpy array
:returns: LaTeX bmatrix as a string
"""
if len(a.shape) > 2:
raise ValueError('bmatrix can at most display two dimensions')
lines = str(a).replace('[', '').replace(']', '').splitlines()
rv = [r'\begin{bmatrix}']
rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines]
rv += [r'\end{bmatrix}']
return '\n'.join(rv)
with st.sidebar:
st.latex(r'''
A = \begin{bmatrix}
a & b\\
b & c
\end{bmatrix}''')
a = st.slider('a',-2.0, 2.0, step = 0.05, value = 1.0)
b = st.slider('b',-2.0, 2.0, step = 0.05, value = 0.0)
c = st.slider('c',-2.0, 2.0, step = 0.05, value = 1.0)
#%%
theta_array = np.linspace(0, 2*np.pi, 36)
X = np.column_stack((np.cos(theta_array),
np.sin(theta_array)))
# st.write(X)
A = np.array([[a, b],
[b, c]])
st.latex(r'''z^Tz = 1''')
st.latex(r'''x = Az''')
st.latex('A =' + bmatrix(A))
X_ = X@A
#define symbolic vars, function
x1,x2 = sympy.symbols('x1 x2')
y1,y2 = sympy.symbols('y1 y2')
x = np.array([[x1,x2]]).T
y = np.array([[y1,y2]]).T
Q = np.linalg.inv(A@A.T)
D,V = np.linalg.eig(Q)
D = np.diag(D)
st.latex(r'Q = \left( AA^T\right)^{-1} = ' + bmatrix(np.round(Q, 3)))
st.latex(r'''Q = V \Lambda V^{T}''')
st.latex(bmatrix(np.around(Q, decimals=3)) + '=' +
bmatrix(np.around(V, decimals=3)) + '@' +
bmatrix(np.around(D, decimals=3)) + '@' +
bmatrix(np.around(V.T, decimals=3)))
f_x = x.T@np.round(Q, 3)@x
f_y = y.T@np.round(D, 3)@y
from sympy import *
st.write('The formula of the ellipse:')
st.latex(latex(simplify(f_x[0][0])) + ' = 1')
st.write('The formula of the transformed ellipse:')
st.latex(latex(simplify(f_y[0][0])) + ' = 1')
#%%
color_array = np.linspace(0,1,len(X))
# st.write(color_array)
X_c = np.column_stack((X_, color_array))
df = pd.DataFrame(X_c, columns=['x1','x2', 'color'])
#%% Scatter
fig = px.scatter(df,
x="x1",
y="x2",
color='color',
color_continuous_scale=px.colors.sequential.Rainbow)
fig.update_layout(
autosize=False,
width=500,
height=500)
fig.add_hline(y=0, line_color = 'black')
fig.add_vline(x=0, line_color = 'black')
fig.update_layout(coloraxis_showscale=False)
fig.update_xaxes(range=[-3, 3])
fig.update_yaxes(range=[-3, 3])
st.plotly_chart(fig)