Files
Iris Series: Visualize Math -- From Arithmetic Basics to Machine Learning 79be5dda7d Add files via upload
2025-02-01 17:06:45 +08:00

203 lines
4.4 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
"metadata": {},
"source": [
"Chapter 04\n",
"\n",
"# 矩阵乘法\n",
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
]
},
{
"cell_type": "markdown",
"id": "f78179ac-736d-417f-964f-a079c966931d",
"metadata": {},
"source": [
"\n",
"\n",
"该代码定义了两个 $2 \\times 2$ 的矩阵 $A$ 和 $B$,并计算了它们的矩阵乘积。矩阵 $A$ 和 $B$ 分别为:\n",
"\n",
"$$\n",
"A = \\begin{bmatrix} 1 & 2 \\\\ 3 & 4 \\end{bmatrix}, \\quad B = \\begin{bmatrix} 2 & 4 \\\\ 1 & 3 \\end{bmatrix}\n",
"$$\n",
"\n",
"矩阵乘积 $A @ B$ 的计算结果为:\n",
"\n",
"$$\n",
"A @ B = \\begin{bmatrix} 1 \\cdot 2 + 2 \\cdot 1 & 1 \\cdot 4 + 2 \\cdot 3 \\\\ 3 \\cdot 2 + 4 \\cdot 1 & 3 \\cdot 4 + 4 \\cdot 3 \\end{bmatrix} = \\begin{bmatrix} 4 & 10 \\\\ 10 & 24 \\end{bmatrix}\n",
"$$\n",
"\n",
"代码中,矩阵乘法操作使用了 `np.matmul` 函数和 `@` 运算符两种方式。这展示了 NumPy 中进行矩阵乘法的两种等效方法。"
]
},
{
"cell_type": "markdown",
"id": "cc4e525d-60d4-4447-a29e-2e1ead9aa96e",
"metadata": {},
"source": [
"## 导入所需库"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "80885172-f546-4973-add9-496ddb779de5",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np # 导入NumPy库用于数值计算"
]
},
{
"cell_type": "markdown",
"id": "bef4a295-b3fe-493c-9baf-04b2a95d913e",
"metadata": {},
"source": [
"## 定义两个矩阵"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8abe8f8d-6398-4bb6-ac14-a1b1139873fd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1, 2],\n",
" [3, 4]])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A = np.array([[1, 2], # 定义矩阵A\n",
" [3, 4]])\n",
"A"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dbb8337a-f940-4337-9a98-65692ff3e854",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[2, 4],\n",
" [1, 3]])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"B = np.array([[2, 4], # 定义矩阵B\n",
" [1, 3]])\n",
"B"
]
},
{
"cell_type": "markdown",
"id": "fd37527e-b082-4899-a2fe-6b04c8db9fea",
"metadata": {},
"source": [
"## 矩阵乘法"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "313d8fec-6e35-4e36-900f-efa4bd5c6adc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 4, 10],\n",
" [10, 24]])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A_times_B = np.matmul(A, B) # 使用np.matmul计算矩阵A和B的乘积\n",
"A_times_B"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3efab8d4-012b-4f28-b515-d9047d180a89",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 4, 10],\n",
" [10, 24]])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A_times_B_2 = A @ B # 使用@操作符计算矩阵A和B的乘积\n",
"A_times_B_2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}