mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-02 18:21:08 +08:00
292 lines
7.2 KiB
Plaintext
292 lines
7.2 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 06\n",
|
||
"\n",
|
||
"# 分块矩阵\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "25999c8b-f570-4ca4-b9d4-6e8c9537b859",
|
||
"metadata": {},
|
||
"source": [
|
||
"这段代码演示了如何对矩阵进行分块和重组操作。首先定义了一个 \\(4 \\times 5\\) 矩阵 \\( A \\):\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A = \\begin{bmatrix}\n",
|
||
"1 & 2 & 3 & 0 & 0 \\\\\n",
|
||
"4 & 5 & 6 & 0 & 0 \\\\\n",
|
||
"0 & 0 & 0 & -1 & 0 \\\\\n",
|
||
"0 & 0 & 0 & 0 & 1 \\\\\n",
|
||
"\\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"然后使用 NumPy 的切片方法,将矩阵 \\( A \\) 分割为 4 个子矩阵(即 \\(2 \\times 2\\) 的块矩阵结构):\n",
|
||
"\n",
|
||
"1. \\( A_{1,1} = A[0:2, 0:3] \\),即前两行和前三列的子矩阵:\n",
|
||
" $$\n",
|
||
" A_{1,1} = \\begin{bmatrix} 1 & 2 & 3 \\\\ 4 & 5 & 6 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
" \n",
|
||
"2. \\( A_{1,2} = A[0:2, 3:] \\),即前两行和最后两列的子矩阵:\n",
|
||
" $$\n",
|
||
" A_{1,2} = \\begin{bmatrix} 0 & 0 \\\\ 0 & 0 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
"3. \\( A_{2,1} = A[2:, 0:3] \\),即后两行和前三列的子矩阵:\n",
|
||
" $$\n",
|
||
" A_{2,1} = \\begin{bmatrix} 0 & 0 & 0 \\\\ 0 & 0 & 0 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
"4. \\( A_{2,2} = A[2:, 3:] \\),即后两行和最后两列的子矩阵:\n",
|
||
" $$\n",
|
||
" A_{2,2} = \\begin{bmatrix} -1 & 0 \\\\ 0 & 1 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
"最后使用 `np.block` 函数将这些子矩阵重新组合为一个新的矩阵 \\( A' \\),其结构与原矩阵 \\( A \\) 相同:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A' = \\begin{bmatrix} \n",
|
||
"A_{1,1} & A_{1,2} \\\\ \n",
|
||
"A_{2,1} & A_{2,2} \n",
|
||
"\\end{bmatrix} = \n",
|
||
"\\begin{bmatrix} \n",
|
||
"1 & 2 & 3 & 0 & 0 \\\\ \n",
|
||
"4 & 5 & 6 & 0 & 0 \\\\ \n",
|
||
"0 & 0 & 0 & -1 & 0 \\\\ \n",
|
||
"0 & 0 & 0 & 0 & 1 \n",
|
||
"\\end{bmatrix}\n",
|
||
"$$ \n",
|
||
"\n",
|
||
"通过这种方法,可以方便地在分块矩阵操作中对矩阵进行重新组合,实现了矩阵的分解与重构。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "da9bd893-e25f-4193-b12b-e5cac674f64b",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "67b49f8e-b6d5-49d4-b4a4-190ecd915450",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义矩阵 A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "e00b27dd-c721-42e1-8f65-fa2937b460ad",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[ 1, 2, 3, 0, 0],\n",
|
||
" [ 4, 5, 6, 0, 0],\n",
|
||
" [ 0, 0, 0, -1, 0],\n",
|
||
" [ 0, 0, 0, 0, 1]])"
|
||
]
|
||
},
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A = np.array([[1, 2, 3, 0, 0], # 定义矩阵 A 的元素\n",
|
||
" [4, 5, 6, 0, 0],\n",
|
||
" [0, 0, 0, -1, 0],\n",
|
||
" [0, 0 ,0, 0, 1]])\n",
|
||
"A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5a878c1b-238b-4f8d-a033-db66fb2aa0fa",
|
||
"metadata": {},
|
||
"source": [
|
||
"## NumPy 数组切片操作"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "440560e5-ed77-4bbc-8fa7-d2c09285e3c7",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[1, 2, 3],\n",
|
||
" [4, 5, 6]])"
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_1_1 = A[0:2,0:3] # 提取矩阵 A 的前两行和前三列作为子矩阵 A_1_1\n",
|
||
"A_1_1"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "29344301-cbb7-4fbd-b64b-d23aced6823e",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[0, 0],\n",
|
||
" [0, 0]])"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_1_2 = A[0:2,3:] # 提取矩阵 A 的前两行和最后两列作为子矩阵 A_1_2\n",
|
||
"A_1_2\n",
|
||
"# A_1_2 = A[0:2,-2:] # 或者用负索引方式提取前两行和最后两列(注释部分)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "b24013dd-a04e-44f6-9c89-67b2a0027bff",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[0, 0, 0],\n",
|
||
" [0, 0, 0]])"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_2_1 = A[2:,0:3] # 提取矩阵 A 的后两行和前三列作为子矩阵 A_2_1\n",
|
||
"A_2_1\n",
|
||
"# A_2_1 = A[-2:,0:3] # 或者用负索引方式提取后两行和前三列(注释部分)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "2aa41d01-ef5a-450d-b912-d0cf9134f16f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[-1, 0],\n",
|
||
" [ 0, 1]])"
|
||
]
|
||
},
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_2_2 = A[2:,3:] # 提取矩阵 A 的后两行和最后两列作为子矩阵 A_2_2\n",
|
||
"A_2_2\n",
|
||
"# A_2_2 = A[-2:,-2:] # 或者用负索引方式提取后两行和最后两列(注释部分)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f618ccce-d822-417d-8ce1-6cb6d3f90999",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 使用嵌套列表中的块组装矩阵"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "4dc81f48-c1a3-42e0-82df-b76c62601926",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[ 1, 2, 3, 0, 0],\n",
|
||
" [ 4, 5, 6, 0, 0],\n",
|
||
" [ 0, 0, 0, -1, 0],\n",
|
||
" [ 0, 0, 0, 0, 1]])"
|
||
]
|
||
},
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_ = np.block([[A_1_1, A_1_2], # 通过 np.block 函数将子矩阵 A_1_1、A_1_2、A_2_1 和 A_2_2 组合成新的矩阵 A_\n",
|
||
" [A_2_1, A_2_2]])\n",
|
||
"A_"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|