更新 Pegasos python单机版

This commit is contained in:
jiangzhonglian
2017-09-14 17:02:44 +08:00
parent 0b4bbf48a1
commit 1bbd40eb5e

View File

@@ -10,24 +10,26 @@ from numpy import *
def loadDataSet(fileName):
dataMat = []; labelMat = []
dataMat = []
labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr = line.strip().split('\t')
#dataMat.append([float(lineArr[0]), float(lineArr[1]), float(lineArr[2])])
# dataMat.append([float(lineArr[0]), float(lineArr[1]), float(lineArr[2])])
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat,labelMat
return dataMat, labelMat
def seqPegasos(dataSet, labels, lam, T):
m,n = shape(dataSet); w = zeros(n)
m, n = shape(dataSet)
w = zeros(n)
for t in range(1, T+1):
i = random.randint(m)
eta = 1.0/(lam*t)
p = predict(w, dataSet[i,:])
p = predict(w, dataSet[i, :])
if labels[i]*p < 1:
w = (1.0 - 1/t)*w + eta*labels[i]*dataSet[i,:]
w = (1.0 - 1/t)*w + eta*labels[i]*dataSet[i, :]
else:
w = (1.0 - 1/t)*w
print w
@@ -39,25 +41,25 @@ def predict(w, x):
def batchPegasos(dataSet, labels, lam, T, k):
m,n = shape(dataSet); w = zeros(n);
m, n = shape(dataSet)
w = zeros(n)
dataIndex = range(m)
for t in range(1, T+1):
wDelta = mat(zeros(n)) # 重置 wDelta
wDelta = mat(zeros(n)) # 重置 wDelta
eta = 1.0/(lam*t)
random.shuffle(dataIndex)
for j in range(k):# 全部的训练集
for j in range(k): # 全部的训练集
i = dataIndex[j]
p = predict(w, dataSet[i,:]) # mapper 代码
p = predict(w, dataSet[i, :]) # mapper 代码
if labels[i]*p < 1: # mapper 代码
wDelta += labels[i]*dataSet[i,:].A # 累积变化
wDelta += labels[i]*dataSet[i, :].A # 累积变化
w = (1.0 - 1/t)*w + (eta/k)*wDelta # 在每个 T上应用更改
return w
datArr,labelList = loadDataSet('testSet.txt')
datArr, labelList = loadDataSet('input/15.BigData_MapReduce/testSet.txt')
datMat = mat(datArr)
#finalWs = seqPegasos(datMat, labelList, 2, 5000)
# finalWs = seqPegasos(datMat, labelList, 2, 5000)
finalWs = batchPegasos(datMat, labelList, 2, 50, 100)
print finalWs
@@ -65,20 +67,25 @@ import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
x1=[]; y1=[]; xm1=[]; ym1=[]
x1 = []
y1 = []
xm1 = []
ym1 = []
for i in range(len(labelList)):
if labelList[i] == 1.0:
x1.append(datMat[i,0]); y1.append(datMat[i,1])
x1.append(datMat[i, 0])
y1.append(datMat[i, 1])
else:
xm1.append(datMat[i,0]); ym1.append(datMat[i,1])
xm1.append(datMat[i, 0])
ym1.append(datMat[i, 1])
ax.scatter(x1, y1, marker='s', s=90)
ax.scatter(xm1, ym1, marker='o', s=50, c='red')
x = arange(-6.0, 8.0, 0.1)
y = (-finalWs[0,0]*x - 0)/finalWs[0,1]
#y2 = (0.43799*x)/0.12316
y2 = (0.498442*x)/0.092387 #2 iterations
ax.plot(x,y)
ax.plot(x,y2,'g-.')
ax.axis([-6,8,-4,5])
ax.legend(('50 Iterations', '2 Iterations') )
y = (-finalWs[0, 0]*x - 0)/finalWs[0, 1]
# y2 = (0.43799*x)/0.12316
y2 = (0.498442*x)/0.092387 # 2 iterations
ax.plot(x, y)
ax.plot(x, y2, 'g-.')
ax.axis([-6, 8, -4, 5])
ax.legend(('50 Iterations', '2 Iterations'))
plt.show()