mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 06:15:22 +08:00
添加15章代码和测试数据
This commit is contained in:
40
input/15.BigData_MapReduce/err.txt
Normal file
40
input/15.BigData_MapReduce/err.txt
Normal file
@@ -0,0 +1,40 @@
|
||||
No handlers could be found for logger "mrjob.job"
|
||||
using configs in c:/Users/Peter\.mrjob.conf
|
||||
creating tmp directory /scratch/$USER\mrSVM.Peter.20111230.181815.061000
|
||||
reading from STDIN
|
||||
> 'c:\Python27\python.exe' mrSVM.py --step-num=0 --mapper '/scratch/$USER\mrSVM.Peter.20111230.181815.061000\input_part-00000'
|
||||
writing to /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-0-mapper_part-00000
|
||||
> 'c:\Python27\python.exe' mrSVM.py --step-num=0 --mapper '/scratch/$USER\mrSVM.Peter.20111230.181815.061000\input_part-00001'
|
||||
writing to /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-0-mapper_part-00001
|
||||
STDERR: No handlers could be found for logger "mrjob.job"
|
||||
STDERR: No handlers could be found for logger "mrjob.job"
|
||||
Counters from step 1:
|
||||
(no counters found)
|
||||
writing to /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-0-mapper-sorted
|
||||
> sort '/scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-0-mapper_part-00000' '/scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-0-mapper_part-00001'
|
||||
Piping files into sort for Windows compatibility
|
||||
> sort
|
||||
> 'c:\Python27\python.exe' mrSVM.py --step-num=0 --reducer '/scratch/$USER\mrSVM.Peter.20111230.181815.061000\input_part-00000'
|
||||
writing to /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-0-reducer_part-00000
|
||||
STDERR: No handlers could be found for logger "mrjob.job"
|
||||
Counters from step 1:
|
||||
(no counters found)
|
||||
> 'c:\Python27\python.exe' mrSVM.py --step-num=1 --mapper '/scratch/$USER\mrSVM.Peter.20111230.181815.061000\input_part-00000'
|
||||
writing to /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-1-mapper_part-00000
|
||||
> 'c:\Python27\python.exe' mrSVM.py --step-num=1 --mapper '/scratch/$USER\mrSVM.Peter.20111230.181815.061000\input_part-00001'
|
||||
writing to /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-1-mapper_part-00001
|
||||
STDERR: No handlers could be found for logger "mrjob.job"
|
||||
STDERR: No handlers could be found for logger "mrjob.job"
|
||||
Counters from step 2:
|
||||
(no counters found)
|
||||
writing to /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-1-mapper-sorted
|
||||
Piping files into sort for Windows compatibility
|
||||
> sort
|
||||
> 'c:\Python27\python.exe' mrSVM.py --step-num=1 --reducer '/scratch/$USER\mrSVM.Peter.20111230.181815.061000\input_part-00000'
|
||||
writing to /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-1-reducer_part-00000
|
||||
STDERR: No handlers could be found for logger "mrjob.job"
|
||||
Counters from step 2:
|
||||
(no counters found)
|
||||
Moving /scratch/$USER\mrSVM.Peter.20111230.181815.061000\step-1-reducer_part-00000 -> /scratch/$USER\mrSVM.Peter.20111230.181815.061000\output\part-00000
|
||||
Streaming final output from /scratch/$USER\mrSVM.Peter.20111230.181815.061000\output
|
||||
removing tmp directory /scratch/$USER\mrSVM.Peter.20111230.181815.061000
|
||||
3
input/15.BigData_MapReduce/junk.txt
Normal file
3
input/15.BigData_MapReduce/junk.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
jj I am so sick of TV
|
||||
ss jar jar got a purse
|
||||
22 shit ass
|
||||
101
input/15.BigData_MapReduce/kickStart.txt
Normal file
101
input/15.BigData_MapReduce/kickStart.txt
Normal file
@@ -0,0 +1,101 @@
|
||||
["w", [0.001, 0.001]]
|
||||
["x", 79]
|
||||
["x", 115]
|
||||
["x", 107]
|
||||
["x", 109]
|
||||
["x", 109]
|
||||
["x", 88]
|
||||
["x", 56]
|
||||
["x", 94]
|
||||
["x", 50]
|
||||
["x", 86]
|
||||
["x", 75]
|
||||
["x", 30]
|
||||
["x", 20]
|
||||
["x", 157]
|
||||
["x", 15]
|
||||
["x", 19]
|
||||
["x", 63]
|
||||
["x", 124]
|
||||
["x", 132]
|
||||
["x", 3]
|
||||
["x", 140]
|
||||
["x", 139]
|
||||
["x", 127]
|
||||
["x", 98]
|
||||
["x", 30]
|
||||
["x", 16]
|
||||
["x", 4]
|
||||
["x", 2]
|
||||
["x", 75]
|
||||
["x", 123]
|
||||
["x", 42]
|
||||
["x", 16]
|
||||
["x", 94]
|
||||
["x", 163]
|
||||
["x", 159]
|
||||
["x", 23]
|
||||
["x", 16]
|
||||
["x", 160]
|
||||
["x", 5]
|
||||
["x", 42]
|
||||
["x", 53]
|
||||
["x", 83]
|
||||
["x", 46]
|
||||
["x", 121]
|
||||
["x", 73]
|
||||
["x", 123]
|
||||
["x", 93]
|
||||
["x", 99]
|
||||
["x", 106]
|
||||
["x", 173]
|
||||
["x", 192]
|
||||
["x", 132]
|
||||
["x", 57]
|
||||
["x", 47]
|
||||
["x", 164]
|
||||
["x", 157]
|
||||
["x", 199]
|
||||
["x", 62]
|
||||
["x", 175]
|
||||
["x", 154]
|
||||
["x", 110]
|
||||
["x", 0]
|
||||
["x", 116]
|
||||
["x", 49]
|
||||
["x", 76]
|
||||
["x", 121]
|
||||
["x", 178]
|
||||
["x", 75]
|
||||
["x", 167]
|
||||
["x", 41]
|
||||
["x", 105]
|
||||
["x", 71]
|
||||
["x", 5]
|
||||
["x", 135]
|
||||
["x", 80]
|
||||
["x", 116]
|
||||
["x", 198]
|
||||
["x", 164]
|
||||
["x", 105]
|
||||
["x", 98]
|
||||
["x", 156]
|
||||
["x", 72]
|
||||
["x", 54]
|
||||
["x", 62]
|
||||
["x", 57]
|
||||
["x", 87]
|
||||
["x", 68]
|
||||
["x", 163]
|
||||
["x", 140]
|
||||
["x", 40]
|
||||
["x", 70]
|
||||
["x", 120]
|
||||
["x", 172]
|
||||
["x", 71]
|
||||
["x", 82]
|
||||
["x", 168]
|
||||
["x", 42]
|
||||
["x", 144]
|
||||
["x", 27]
|
||||
["x", 36]
|
||||
200
input/15.BigData_MapReduce/myfile.txt
Normal file
200
input/15.BigData_MapReduce/myfile.txt
Normal file
@@ -0,0 +1,200 @@
|
||||
0.365032 2.465645 -1.000000
|
||||
-2.494175 -0.292380 -1.000000
|
||||
-3.039364 -0.123108 -1.000000
|
||||
1.348150 0.255696 1.000000
|
||||
2.768494 1.234954 1.000000
|
||||
1.232328 -0.601198 1.000000
|
||||
4.404247 3.393022 1.000000
|
||||
0.697004 -2.009448 1.000000
|
||||
-3.373117 -0.713336 -1.000000
|
||||
2.723211 0.775903 1.000000
|
||||
2.901695 1.707367 1.000000
|
||||
-1.829946 0.607276 -1.000000
|
||||
1.472144 -0.388337 1.000000
|
||||
-1.032174 1.591800 -1.000000
|
||||
-2.419741 -0.226650 -1.000000
|
||||
1.336037 2.564594 -1.000000
|
||||
-1.503680 1.256279 -1.000000
|
||||
4.375646 2.089091 1.000000
|
||||
-2.618399 -0.145791 -1.000000
|
||||
0.175550 2.171503 -1.000000
|
||||
-1.813659 0.861575 -1.000000
|
||||
1.365379 -2.079521 1.000000
|
||||
1.132693 -1.134835 1.000000
|
||||
-1.909842 -0.203375 -1.000000
|
||||
2.083515 -0.123439 1.000000
|
||||
-2.942829 -0.263256 -1.000000
|
||||
-0.550709 2.932391 -1.000000
|
||||
2.345072 -0.738737 1.000000
|
||||
-2.812098 0.556459 -1.000000
|
||||
-0.517398 0.162645 -1.000000
|
||||
-2.462396 0.010699 -1.000000
|
||||
2.560602 -0.591844 1.000000
|
||||
-2.232060 -1.372427 -1.000000
|
||||
-0.228876 -3.268298 1.000000
|
||||
3.941297 2.489183 1.000000
|
||||
-2.858850 -1.349790 -1.000000
|
||||
2.421014 -0.355223 1.000000
|
||||
-1.112512 1.194459 -1.000000
|
||||
-2.596897 -1.137791 -1.000000
|
||||
2.238589 1.900233 1.000000
|
||||
2.180268 1.177119 1.000000
|
||||
-2.674983 -0.522555 -1.000000
|
||||
-1.070534 -0.269203 -1.000000
|
||||
0.634596 -1.968924 1.000000
|
||||
-3.056496 -2.411444 -1.000000
|
||||
-3.125469 -2.560011 -1.000000
|
||||
-2.015606 0.258282 -1.000000
|
||||
-1.742318 0.888477 -1.000000
|
||||
1.321158 -0.087550 1.000000
|
||||
0.931512 -1.726051 1.000000
|
||||
-0.215167 1.522793 -1.000000
|
||||
2.346521 0.316568 1.000000
|
||||
2.138992 1.315335 1.000000
|
||||
-3.631578 -1.493405 -1.000000
|
||||
-0.713435 1.015818 -1.000000
|
||||
-2.963170 -0.128725 -1.000000
|
||||
-0.911295 1.120257 -1.000000
|
||||
1.823362 1.383358 1.000000
|
||||
3.912515 1.761468 1.000000
|
||||
-3.142532 -1.332066 -1.000000
|
||||
4.106318 2.468945 1.000000
|
||||
2.208287 -0.357459 1.000000
|
||||
-3.223791 -0.832623 -1.000000
|
||||
-2.285363 -0.520775 -1.000000
|
||||
2.565906 -0.456137 1.000000
|
||||
-0.979234 1.913094 -1.000000
|
||||
-2.389694 -2.358041 -1.000000
|
||||
-2.652054 -1.866190 -1.000000
|
||||
0.683886 -1.883523 1.000000
|
||||
1.154997 -1.465108 1.000000
|
||||
3.348935 0.365574 1.000000
|
||||
2.987531 0.346268 1.000000
|
||||
1.700014 -0.555228 1.000000
|
||||
1.980124 0.139488 1.000000
|
||||
0.978690 -1.633039 1.000000
|
||||
2.593800 0.862643 1.000000
|
||||
-2.251246 -0.353172 -1.000000
|
||||
1.557428 -1.383201 1.000000
|
||||
-2.597244 -1.826710 -1.000000
|
||||
-2.886051 -1.337213 -1.000000
|
||||
1.325410 0.845017 1.000000
|
||||
1.837022 -0.151031 1.000000
|
||||
-3.667084 -2.656341 -1.000000
|
||||
-1.096365 0.149693 -1.000000
|
||||
-2.971056 -2.411501 -1.000000
|
||||
-2.465852 -0.235159 -1.000000
|
||||
-2.394111 0.351272 -1.000000
|
||||
1.515098 -0.965912 1.000000
|
||||
2.158202 -0.966015 1.000000
|
||||
-1.713482 -0.251601 -1.000000
|
||||
-2.913806 -2.850934 -1.000000
|
||||
1.705200 -0.789277 1.000000
|
||||
3.421766 0.864792 1.000000
|
||||
-1.762714 1.500557 -1.000000
|
||||
-2.955547 0.049390 -1.000000
|
||||
2.717396 1.466253 1.000000
|
||||
-2.359607 -1.360212 -1.000000
|
||||
2.573551 0.246011 1.000000
|
||||
-2.515645 -1.120265 -1.000000
|
||||
0.678309 -3.889064 1.000000
|
||||
1.629286 -0.451862 1.000000
|
||||
-1.484039 -0.211054 -1.000000
|
||||
-3.791016 -0.954143 -1.000000
|
||||
-2.843098 -0.847371 -1.000000
|
||||
-2.170293 1.091531 -1.000000
|
||||
-2.422544 -2.382615 -1.000000
|
||||
-3.703473 -3.821757 -1.000000
|
||||
-2.392575 2.190457 -1.000000
|
||||
-1.311822 -1.069374 -1.000000
|
||||
2.844847 1.022544 1.000000
|
||||
1.123290 -0.470348 1.000000
|
||||
0.459137 -2.125968 1.000000
|
||||
4.034205 1.542917 1.000000
|
||||
-0.934692 0.334676 -1.000000
|
||||
-0.531720 2.098752 -1.000000
|
||||
1.579150 -1.497762 1.000000
|
||||
-3.052029 0.297103 -1.000000
|
||||
0.259368 -0.931559 1.000000
|
||||
2.223190 0.019637 1.000000
|
||||
1.695683 -0.067089 1.000000
|
||||
3.783554 2.380405 1.000000
|
||||
-0.742719 1.599089 -1.000000
|
||||
-3.034314 -1.068352 -1.000000
|
||||
-2.603808 -0.125287 -1.000000
|
||||
-3.444958 -3.611816 -1.000000
|
||||
2.045444 -0.443405 1.000000
|
||||
3.128574 0.859356 1.000000
|
||||
0.690041 -0.852001 1.000000
|
||||
2.055697 0.696273 1.000000
|
||||
-2.772761 -1.353757 -1.000000
|
||||
-2.989774 -1.698669 -1.000000
|
||||
-2.376270 -1.554052 -1.000000
|
||||
2.696921 1.840741 1.000000
|
||||
1.808514 0.574293 1.000000
|
||||
0.758408 0.621123 -1.000000
|
||||
0.087100 -2.424081 1.000000
|
||||
-1.965351 0.714902 -1.000000
|
||||
-2.455455 -0.864560 -1.000000
|
||||
2.242510 2.271935 1.000000
|
||||
3.768713 1.966209 1.000000
|
||||
1.781191 -1.035869 1.000000
|
||||
3.428376 4.010583 1.000000
|
||||
1.126828 0.854183 1.000000
|
||||
-3.438612 -2.229961 -1.000000
|
||||
-1.677236 1.302989 -1.000000
|
||||
-0.457661 2.454553 -1.000000
|
||||
-1.253217 0.094550 -1.000000
|
||||
3.631693 -0.584668 1.000000
|
||||
1.325739 -1.474299 1.000000
|
||||
-2.468865 -0.954717 -1.000000
|
||||
0.373049 -0.744924 1.000000
|
||||
-2.724934 -1.931014 -1.000000
|
||||
2.315489 1.487273 1.000000
|
||||
-1.004495 0.396042 -1.000000
|
||||
-2.633016 -2.421408 -1.000000
|
||||
0.892135 -3.181581 1.000000
|
||||
-2.142382 -1.194070 -1.000000
|
||||
1.429072 4.755911 -1.000000
|
||||
-1.470911 -0.587141 -1.000000
|
||||
2.857367 0.926472 1.000000
|
||||
2.209276 -0.856140 1.000000
|
||||
0.636235 -1.853421 1.000000
|
||||
-1.609996 1.717916 -1.000000
|
||||
1.825889 -0.367680 1.000000
|
||||
-1.300348 0.535824 -1.000000
|
||||
1.234706 1.175943 1.000000
|
||||
-2.958675 -2.503623 -1.000000
|
||||
-3.104957 -0.401067 -1.000000
|
||||
-3.257189 0.883429 -1.000000
|
||||
1.748296 -2.783532 1.000000
|
||||
-2.858730 -1.187591 -1.000000
|
||||
2.776790 1.009201 1.000000
|
||||
-3.020057 -1.590170 -1.000000
|
||||
-2.758262 -0.589067 -1.000000
|
||||
2.254778 -0.419287 1.000000
|
||||
3.959366 2.400563 1.000000
|
||||
0.042104 1.919803 -1.000000
|
||||
-2.036118 0.639606 -1.000000
|
||||
0.879784 -0.726036 1.000000
|
||||
-2.004450 -0.741610 -1.000000
|
||||
1.695901 -1.279977 1.000000
|
||||
1.083409 -1.833836 1.000000
|
||||
-0.910787 -0.004560 -1.000000
|
||||
1.781328 -1.148702 1.000000
|
||||
-1.977490 0.922950 -1.000000
|
||||
-3.231551 -2.366104 -1.000000
|
||||
-1.613525 0.913540 -1.000000
|
||||
3.775281 3.594941 1.000000
|
||||
-2.147825 2.515202 -1.000000
|
||||
2.357556 -0.453303 1.000000
|
||||
2.101682 1.621048 1.000000
|
||||
2.583247 1.999725 1.000000
|
||||
-0.701349 3.523552 -1.000000
|
||||
-2.996146 -1.187950 -1.000000
|
||||
2.993353 1.271228 1.000000
|
||||
-1.773598 1.032358 -1.000000
|
||||
-1.806425 0.713270 -1.000000
|
||||
4.134091 2.962575 1.000000
|
||||
-0.379995 0.272405 -1.000000
|
||||
2.601370 1.032435 1.000000
|
||||
303
input/15.BigData_MapReduce/myout.txt
Normal file
303
input/15.BigData_MapReduce/myout.txt
Normal file
@@ -0,0 +1,303 @@
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 79]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 115]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 107]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 109]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 109]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 88]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 56]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 94]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 50]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 86]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 75]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 30]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 20]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 157]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 15]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 19]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 63]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 124]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 132]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 3]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 140]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 139]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 127]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 98]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 30]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 16]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 4]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 2]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 75]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 123]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 42]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 16]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 94]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 163]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 159]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 23]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 16]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 160]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 5]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 42]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 53]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 83]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 46]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 121]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 73]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 123]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 93]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 99]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 106]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 173]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 192]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 132]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 57]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 47]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 164]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 157]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 199]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 62]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 175]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 154]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 110]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 0]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 116]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 49]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 76]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 121]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 178]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 75]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 167]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 41]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 105]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 71]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 5]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 135]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 80]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 116]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 198]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 164]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 105]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 98]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 156]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 72]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 54]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 62]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 57]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 87]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 68]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 163]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 140]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 40]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 70]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 120]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 172]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 71]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 82]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 168]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 42]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 144]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 27]
|
||||
shape(self.w): (2,)
|
||||
shape(X[index,:]) (1, 2)
|
||||
1 ["u", 36]
|
||||
in the map_fin
|
||||
1 ["w", [0.001, 0.001]]
|
||||
1 ["t", 1]
|
||||
37
input/15.BigData_MapReduce/svmDat2.txt
Normal file
37
input/15.BigData_MapReduce/svmDat2.txt
Normal file
File diff suppressed because one or more lines are too long
37
input/15.BigData_MapReduce/svmDat26
Normal file
37
input/15.BigData_MapReduce/svmDat26
Normal file
File diff suppressed because one or more lines are too long
37
input/15.BigData_MapReduce/svmDat27
Normal file
37
input/15.BigData_MapReduce/svmDat27
Normal file
File diff suppressed because one or more lines are too long
37
input/15.BigData_MapReduce/svmData.txt
Normal file
37
input/15.BigData_MapReduce/svmData.txt
Normal file
File diff suppressed because one or more lines are too long
200
input/15.BigData_MapReduce/testSet.txt
Normal file
200
input/15.BigData_MapReduce/testSet.txt
Normal file
@@ -0,0 +1,200 @@
|
||||
0.365032 2.465645 -1
|
||||
-2.494175 -0.292380 -1
|
||||
-3.039364 -0.123108 -1
|
||||
1.348150 0.255696 1
|
||||
2.768494 1.234954 1
|
||||
1.232328 -0.601198 1
|
||||
4.404247 3.393022 1
|
||||
0.697004 -2.009448 1
|
||||
-3.373117 -0.713336 -1
|
||||
2.723211 0.775903 1
|
||||
2.901695 1.707367 1
|
||||
-1.829946 0.607276 -1
|
||||
1.472144 -0.388337 1
|
||||
-1.032174 1.591800 -1
|
||||
-2.419741 -0.226650 -1
|
||||
1.336037 2.564594 -1
|
||||
-1.503680 1.256279 -1
|
||||
4.375646 2.089091 1
|
||||
-2.618399 -0.145791 -1
|
||||
0.175550 2.171503 -1
|
||||
-1.813659 0.861575 -1
|
||||
1.365379 -2.079521 1
|
||||
1.132693 -1.134835 1
|
||||
-1.909842 -0.203375 -1
|
||||
2.083515 -0.123439 1
|
||||
-2.942829 -0.263256 -1
|
||||
-0.550709 2.932391 -1
|
||||
2.345072 -0.738737 1
|
||||
-2.812098 0.556459 -1
|
||||
-0.517398 0.162645 -1
|
||||
-2.462396 0.010699 -1
|
||||
2.560602 -0.591844 1
|
||||
-2.232060 -1.372427 -1
|
||||
-0.228876 -3.268298 1
|
||||
3.941297 2.489183 1
|
||||
-2.858850 -1.349790 -1
|
||||
2.421014 -0.355223 1
|
||||
-1.112512 1.194459 -1
|
||||
-2.596897 -1.137791 -1
|
||||
2.238589 1.900233 1
|
||||
2.180268 1.177119 1
|
||||
-2.674983 -0.522555 -1
|
||||
-1.070534 -0.269203 -1
|
||||
0.634596 -1.968924 1
|
||||
-3.056496 -2.411444 -1
|
||||
-3.125469 -2.560011 -1
|
||||
-2.015606 0.258282 -1
|
||||
-1.742318 0.888477 -1
|
||||
1.321158 -0.087550 1
|
||||
0.931512 -1.726051 1
|
||||
-0.215167 1.522793 -1
|
||||
2.346521 0.316568 1
|
||||
2.138992 1.315335 1
|
||||
-3.631578 -1.493405 -1
|
||||
-0.713435 1.015818 -1
|
||||
-2.963170 -0.128725 -1
|
||||
-0.911295 1.120257 -1
|
||||
1.823362 1.383358 1
|
||||
3.912515 1.761468 1
|
||||
-3.142532 -1.332066 -1
|
||||
4.106318 2.468945 1
|
||||
2.208287 -0.357459 1
|
||||
-3.223791 -0.832623 -1
|
||||
-2.285363 -0.520775 -1
|
||||
2.565906 -0.456137 1
|
||||
-0.979234 1.913094 -1
|
||||
-2.389694 -2.358041 -1
|
||||
-2.652054 -1.866190 -1
|
||||
0.683886 -1.883523 1
|
||||
1.154997 -1.465108 1
|
||||
3.348935 0.365574 1
|
||||
2.987531 0.346268 1
|
||||
1.700014 -0.555228 1
|
||||
1.980124 0.139488 1
|
||||
0.978690 -1.633039 1
|
||||
2.593800 0.862643 1
|
||||
-2.251246 -0.353172 -1
|
||||
1.557428 -1.383201 1
|
||||
-2.597244 -1.826710 -1
|
||||
-2.886051 -1.337213 -1
|
||||
1.325410 0.845017 1
|
||||
1.837022 -0.151031 1
|
||||
-3.667084 -2.656341 -1
|
||||
-1.096365 0.149693 -1
|
||||
-2.971056 -2.411501 -1
|
||||
-2.465852 -0.235159 -1
|
||||
-2.394111 0.351272 -1
|
||||
1.515098 -0.965912 1
|
||||
2.158202 -0.966015 1
|
||||
-1.713482 -0.251601 -1
|
||||
-2.913806 -2.850934 -1
|
||||
1.705200 -0.789277 1
|
||||
3.421766 0.864792 1
|
||||
-1.762714 1.500557 -1
|
||||
-2.955547 0.049390 -1
|
||||
2.717396 1.466253 1
|
||||
-2.359607 -1.360212 -1
|
||||
2.573551 0.246011 1
|
||||
-2.515645 -1.120265 -1
|
||||
0.678309 -3.889064 1
|
||||
1.629286 -0.451862 1
|
||||
-1.484039 -0.211054 -1
|
||||
-3.791016 -0.954143 -1
|
||||
-2.843098 -0.847371 -1
|
||||
-2.170293 1.091531 -1
|
||||
-2.422544 -2.382615 -1
|
||||
-3.703473 -3.821757 -1
|
||||
-2.392575 2.190457 -1
|
||||
-1.311822 -1.069374 -1
|
||||
2.844847 1.022544 1
|
||||
1.123290 -0.470348 1
|
||||
0.459137 -2.125968 1
|
||||
4.034205 1.542917 1
|
||||
-0.934692 0.334676 -1
|
||||
-0.531720 2.098752 -1
|
||||
1.579150 -1.497762 1
|
||||
-3.052029 0.297103 -1
|
||||
0.259368 -0.931559 1
|
||||
2.223190 0.019637 1
|
||||
1.695683 -0.067089 1
|
||||
3.783554 2.380405 1
|
||||
-0.742719 1.599089 -1
|
||||
-3.034314 -1.068352 -1
|
||||
-2.603808 -0.125287 -1
|
||||
-3.444958 -3.611816 -1
|
||||
2.045444 -0.443405 1
|
||||
3.128574 0.859356 1
|
||||
0.690041 -0.852001 1
|
||||
2.055697 0.696273 1
|
||||
-2.772761 -1.353757 -1
|
||||
-2.989774 -1.698669 -1
|
||||
-2.376270 -1.554052 -1
|
||||
2.696921 1.840741 1
|
||||
1.808514 0.574293 1
|
||||
0.758408 0.621123 -1
|
||||
0.087100 -2.424081 1
|
||||
-1.965351 0.714902 -1
|
||||
-2.455455 -0.864560 -1
|
||||
2.242510 2.271935 1
|
||||
3.768713 1.966209 1
|
||||
1.781191 -1.035869 1
|
||||
3.428376 4.010583 1
|
||||
1.126828 0.854183 1
|
||||
-3.438612 -2.229961 -1
|
||||
-1.677236 1.302989 -1
|
||||
-0.457661 2.454553 -1
|
||||
-1.253217 0.094550 -1
|
||||
3.631693 -0.584668 1
|
||||
1.325739 -1.474299 1
|
||||
-2.468865 -0.954717 -1
|
||||
0.373049 -0.744924 1
|
||||
-2.724934 -1.931014 -1
|
||||
2.315489 1.487273 1
|
||||
-1.004495 0.396042 -1
|
||||
-2.633016 -2.421408 -1
|
||||
0.892135 -3.181581 1
|
||||
-2.142382 -1.194070 -1
|
||||
1.429072 4.755911 -1
|
||||
-1.470911 -0.587141 -1
|
||||
2.857367 0.926472 1
|
||||
2.209276 -0.856140 1
|
||||
0.636235 -1.853421 1
|
||||
-1.609996 1.717916 -1
|
||||
1.825889 -0.367680 1
|
||||
-1.300348 0.535824 -1
|
||||
1.234706 1.175943 1
|
||||
-2.958675 -2.503623 -1
|
||||
-3.104957 -0.401067 -1
|
||||
-3.257189 0.883429 -1
|
||||
1.748296 -2.783532 1
|
||||
-2.858730 -1.187591 -1
|
||||
2.776790 1.009201 1
|
||||
-3.020057 -1.590170 -1
|
||||
-2.758262 -0.589067 -1
|
||||
2.254778 -0.419287 1
|
||||
3.959366 2.400563 1
|
||||
0.042104 1.919803 -1
|
||||
-2.036118 0.639606 -1
|
||||
0.879784 -0.726036 1
|
||||
-2.004450 -0.741610 -1
|
||||
1.695901 -1.279977 1
|
||||
1.083409 -1.833836 1
|
||||
-0.910787 -0.004560 -1
|
||||
1.781328 -1.148702 1
|
||||
-1.977490 0.922950 -1
|
||||
-3.231551 -2.366104 -1
|
||||
-1.613525 0.913540 -1
|
||||
3.775281 3.594941 1
|
||||
-2.147825 2.515202 -1
|
||||
2.357556 -0.453303 1
|
||||
2.101682 1.621048 1
|
||||
2.583247 1.999725 1
|
||||
-0.701349 3.523552 -1
|
||||
-2.996146 -1.187950 -1
|
||||
2.993353 1.271228 1
|
||||
-1.773598 1.032358 -1
|
||||
-1.806425 0.713270 -1
|
||||
4.134091 2.962575 1
|
||||
-0.379995 0.272405 -1
|
||||
2.601370 1.032435 1
|
||||
200
input/15.BigData_MapReduce/testSet200.txt
Normal file
200
input/15.BigData_MapReduce/testSet200.txt
Normal file
@@ -0,0 +1,200 @@
|
||||
2.566588 -0.566564 1
|
||||
3.813758 2.148214 1
|
||||
3.803649 2.297096 1
|
||||
2.996947 -1.156863 1
|
||||
2.018915 -0.905604 1
|
||||
2.722914 2.050793 1
|
||||
2.992540 0.604431 1
|
||||
1.973198 -0.416027 1
|
||||
4.231757 2.197621 1
|
||||
-3.423482 -1.666829 -1
|
||||
3.017583 -0.852549 1
|
||||
2.378933 -0.068925 1
|
||||
2.827171 0.112122 1
|
||||
3.099968 -0.314056 1
|
||||
-1.237312 2.041868 -1
|
||||
5.192917 2.756125 1
|
||||
-2.572959 -1.407749 -1
|
||||
-1.972541 0.113997 -1
|
||||
3.410411 -1.471934 1
|
||||
3.635269 -1.067406 1
|
||||
-5.139639 -2.996639 -1
|
||||
-1.880483 -0.648054 -1
|
||||
-2.168873 0.526882 -1
|
||||
5.642283 1.221138 1
|
||||
4.229408 1.263818 1
|
||||
-2.563922 -0.132134 -1
|
||||
-3.001167 -0.958829 -1
|
||||
-5.180670 -0.967162 -1
|
||||
3.264381 0.843975 1
|
||||
2.925061 0.211085 1
|
||||
3.208235 0.049203 1
|
||||
2.109814 1.020155 1
|
||||
4.043111 0.038868 1
|
||||
-2.993809 -0.153942 -1
|
||||
-4.343854 0.002387 -1
|
||||
2.770473 0.027766 1
|
||||
-2.071658 1.145849 -1
|
||||
-3.521452 0.245865 -1
|
||||
-3.271004 0.002030 -1
|
||||
-1.343470 4.378228 -1
|
||||
2.276676 0.155982 1
|
||||
-4.068011 -0.647258 -1
|
||||
-1.850638 2.210614 -1
|
||||
-4.639977 -1.031178 -1
|
||||
-4.684251 -3.087190 -1
|
||||
2.940128 0.940271 1
|
||||
1.863125 -0.838375 1
|
||||
2.568502 0.070915 1
|
||||
2.899899 -1.277806 1
|
||||
3.352340 -0.713969 1
|
||||
-4.317466 0.852795 -1
|
||||
3.201230 0.976139 1
|
||||
3.822834 0.069645 1
|
||||
2.692972 -0.176728 1
|
||||
-1.146605 2.081193 -1
|
||||
2.998234 1.141442 1
|
||||
2.312164 -1.269429 1
|
||||
3.396265 0.862029 1
|
||||
3.274000 -0.696190 1
|
||||
-2.595839 -0.263462 -1
|
||||
-1.812287 1.673161 -1
|
||||
0.969156 -1.931523 1
|
||||
-2.221344 0.203244 -1
|
||||
0.501463 -2.583951 1
|
||||
-3.150028 1.235862 -1
|
||||
-4.268858 0.071051 -1
|
||||
-3.349838 0.678968 -1
|
||||
-3.126228 -0.393941 -1
|
||||
-2.573798 0.267638 -1
|
||||
4.109014 1.710147 1
|
||||
-2.843759 0.484696 -1
|
||||
3.707519 -0.370216 1
|
||||
-4.195957 -0.277812 -1
|
||||
2.675081 -0.573838 1
|
||||
-3.125774 0.081851 -1
|
||||
1.971943 -0.468073 1
|
||||
3.407029 0.515338 1
|
||||
-2.104839 2.804795 -1
|
||||
0.874914 -1.404919 1
|
||||
3.112299 1.175667 1
|
||||
-2.829713 0.662682 -1
|
||||
3.568705 4.168130 1
|
||||
4.616527 2.518176 1
|
||||
1.795161 -1.250346 1
|
||||
4.008731 2.757045 1
|
||||
-4.508237 -3.536722 -1
|
||||
-2.456205 1.371719 -1
|
||||
2.002132 -1.389533 1
|
||||
2.837388 0.193087 1
|
||||
3.332083 -1.083519 1
|
||||
3.116535 -0.303645 1
|
||||
3.586091 1.202891 1
|
||||
4.075176 -1.392830 1
|
||||
-2.686817 -0.295541 -1
|
||||
-4.347040 -0.238252 -1
|
||||
-2.216701 0.192294 -1
|
||||
-3.698974 -1.535749 -1
|
||||
-2.550443 -1.304260 -1
|
||||
-3.184541 -0.694387 -1
|
||||
3.541460 1.293369 1
|
||||
2.861718 -1.539216 1
|
||||
-3.297277 0.120904 -1
|
||||
-2.877627 2.168402 -1
|
||||
1.971946 -1.934373 1
|
||||
1.691137 -0.128856 1
|
||||
-2.894363 -1.081141 -1
|
||||
3.737381 -0.295484 1
|
||||
-2.915021 0.450760 -1
|
||||
3.166039 -0.984355 1
|
||||
-2.232850 2.234037 -1
|
||||
-2.339145 -0.623513 -1
|
||||
-2.333595 0.962038 -1
|
||||
3.786374 0.586053 1
|
||||
1.782042 -2.219559 1
|
||||
3.739798 0.344508 1
|
||||
2.145958 -1.419122 1
|
||||
3.664095 -0.196319 1
|
||||
-3.043546 -0.507600 -1
|
||||
-0.928765 2.070607 -1
|
||||
-3.124872 1.695632 -1
|
||||
-3.020885 0.577177 -1
|
||||
2.590275 0.779679 1
|
||||
-2.523241 -0.919172 -1
|
||||
4.082839 0.662608 1
|
||||
-4.190252 -3.116115 -1
|
||||
3.360103 1.046061 1
|
||||
-2.793587 0.366979 -1
|
||||
3.400676 1.675726 1
|
||||
-2.612133 -1.848598 -1
|
||||
2.564818 -1.149425 1
|
||||
-4.625269 -1.246603 -1
|
||||
-2.158414 0.905748 -1
|
||||
3.190204 1.617466 1
|
||||
5.670475 2.859713 1
|
||||
-3.140959 -1.565962 -1
|
||||
3.275399 -0.385732 1
|
||||
-2.882785 0.764198 -1
|
||||
2.444832 -1.744333 1
|
||||
3.494718 -0.185378 1
|
||||
2.971542 0.185532 1
|
||||
3.683797 -0.827936 1
|
||||
-2.073568 2.713617 -1
|
||||
5.229803 2.581358 1
|
||||
-3.097377 1.369309 -1
|
||||
-3.340725 1.226798 -1
|
||||
0.804569 -1.763511 1
|
||||
2.002499 -1.253770 1
|
||||
-4.441054 -1.504076 -1
|
||||
4.840372 1.159494 1
|
||||
-2.074033 1.334349 -1
|
||||
2.739732 -1.093691 1
|
||||
1.093710 -1.804169 1
|
||||
-1.815973 1.270033 -1
|
||||
-1.535024 1.307626 -1
|
||||
-2.609744 -1.331401 -1
|
||||
2.213643 -0.386181 1
|
||||
-0.193909 -3.182715 1
|
||||
3.981292 1.726516 1
|
||||
-2.199386 0.939470 -1
|
||||
-4.044809 -0.093401 -1
|
||||
-3.633603 -0.601417 -1
|
||||
4.289107 -0.685719 1
|
||||
-3.743011 -2.264532 -1
|
||||
-4.045259 -0.425302 -1
|
||||
1.623011 -1.831822 1
|
||||
3.056557 0.096257 1
|
||||
1.922710 -1.220852 1
|
||||
1.809512 -1.326957 1
|
||||
1.835936 -0.825311 1
|
||||
-3.798285 -0.592936 -1
|
||||
-2.425223 1.389336 -1
|
||||
2.377227 -1.696811 1
|
||||
1.478822 -2.004391 1
|
||||
3.126443 0.449490 1
|
||||
-4.576405 -1.053316 -1
|
||||
-3.061546 1.008689 -1
|
||||
-2.861879 0.191511 -1
|
||||
-2.264559 1.292387 -1
|
||||
3.804691 -0.408870 1
|
||||
-5.390695 -4.685284 -1
|
||||
-4.015686 -1.698655 -1
|
||||
-1.811922 2.826242 -1
|
||||
-0.977725 2.446878 -1
|
||||
-3.722234 -2.148840 -1
|
||||
-2.336758 -0.426078 -1
|
||||
2.881292 0.538803 1
|
||||
-2.603340 1.172457 -1
|
||||
3.420185 1.261315 1
|
||||
3.122753 -1.022180 1
|
||||
-2.160948 -0.760109 -1
|
||||
3.147356 -0.138635 1
|
||||
3.321314 0.799222 1
|
||||
3.358796 1.791473 1
|
||||
2.645603 0.644191 1
|
||||
1.140846 -1.296675 1
|
||||
2.645462 0.289605 1
|
||||
2.876090 1.010588 1
|
||||
2.514470 -1.731317 1
|
||||
2.588991 0.687835 1
|
||||
-2.404388 0.563167 -1
|
||||
43
src/python/15.BigData_MapReduce/mrMean.py
Normal file
43
src/python/15.BigData_MapReduce/mrMean.py
Normal file
@@ -0,0 +1,43 @@
|
||||
'''
|
||||
Created on 2017-04-07
|
||||
|
||||
@author: Peter/ApacheCN-xy
|
||||
'''
|
||||
from mrjob.job import MRJob
|
||||
|
||||
class MRmean(MRJob):
|
||||
def __init__(self, *args, **kwargs): # 对数据初始化
|
||||
super(MRmean, self).__init__(*args, **kwargs)
|
||||
self.inCount = 0
|
||||
self.inSum = 0
|
||||
self.inSqSum = 0
|
||||
|
||||
def map(self, key, val): # 需要 2 个参数,求数据的和与平方和
|
||||
if False: yield
|
||||
inVal = float(val)
|
||||
self.inCount += 1
|
||||
self.inSum += inVal
|
||||
self.inSqSum += inVal*inVal
|
||||
|
||||
def map_final(self): # 计算数据的平均值,平方的均值,并返回
|
||||
mn = self.inSum/self.inCount
|
||||
mnSq = self.inSqSum/self.inCount
|
||||
yield (1, [self.inCount, mn, mnSq])
|
||||
|
||||
def reduce(self, key, packedValues): #
|
||||
cumVal=0.0; cumSumSq=0.0; cumN=0.0
|
||||
for valArr in packedValues: # 从输入流中获取值
|
||||
nj = float(valArr[0])
|
||||
cumN += nj
|
||||
cumVal += nj*float(valArr[1])
|
||||
cumSumSq += nj*float(valArr[2])
|
||||
mean = cumVal/cumN
|
||||
var = (cumSumSq - 2*mean*cumVal + cumN*mean*mean)/cumN
|
||||
yield (mean, var) # 发出平均值和方差
|
||||
|
||||
def steps(self):
|
||||
return ([self.mr(mapper=self.map, mapper_final=self.map_final,\
|
||||
reducer=self.reduce,)])
|
||||
|
||||
if __name__ == '__main__':
|
||||
MRmean.run()
|
||||
78
src/python/15.BigData_MapReduce/mrSVM.py
Normal file
78
src/python/15.BigData_MapReduce/mrSVM.py
Normal file
@@ -0,0 +1,78 @@
|
||||
'''
|
||||
Created on 2017-04-07
|
||||
MapReduce version of Pegasos SVM
|
||||
Using mrjob to automate job flow
|
||||
@author: Peter/ApacheCN-xy
|
||||
'''
|
||||
from mrjob.job import MRJob
|
||||
|
||||
import pickle
|
||||
from numpy import *
|
||||
|
||||
class MRsvm(MRJob):
|
||||
DEFAULT_INPUT_PROTOCOL = 'json_value'
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(MRsvm, self).__init__(*args, **kwargs)
|
||||
self.data = pickle.load(open('C:\Users\Peter\machinelearninginaction\Ch15\svmDat27'))
|
||||
self.w = 0
|
||||
self.eta = 0.69
|
||||
self.dataList = []
|
||||
self.k = self.options.batchsize
|
||||
self.numMappers = 1
|
||||
self.t = 1 #iteration number
|
||||
|
||||
def configure_options(self):
|
||||
super(MRsvm, self).configure_options()
|
||||
self.add_passthrough_option(
|
||||
'--iterations', dest='iterations', default=2, type='int',
|
||||
help='T: number of iterations to run')
|
||||
self.add_passthrough_option(
|
||||
'--batchsize', dest='batchsize', default=100, type='int',
|
||||
help='k: number of data points in a batch')
|
||||
|
||||
def map(self, mapperId, inVals): # 需要 2 个参数
|
||||
#input: nodeId, ('w', w-vector) OR nodeId, ('x', int)
|
||||
if False: yield
|
||||
if inVals[0]=='w': # 积累 w向量
|
||||
self.w = inVals[1]
|
||||
elif inVals[0]=='x':
|
||||
self.dataList.append(inVals[1])# 累积数据点计算
|
||||
elif inVals[0]=='t': self.t = inVals[1]
|
||||
else: self.eta=inVals # 这用于 debug, eta未在map中使用
|
||||
|
||||
def map_fin(self):
|
||||
labels = self.data[:,-1]; X=self.data[:,0:-1]# 将数据重新形成 X 和 Y
|
||||
if self.w == 0: self.w = [0.001]*shape(X)[1] # 在第一次迭代时,初始化 w
|
||||
for index in self.dataList:
|
||||
p = mat(self.w)*X[index,:].T #calc p=w*dataSet[key].T
|
||||
if labels[index]*p < 1.0:
|
||||
yield (1, ['u', index])# 确保一切数据包含相同的key
|
||||
yield (1, ['w', self.w]) # 它们将在同一个 reducer
|
||||
yield (1, ['t', self.t])
|
||||
|
||||
def reduce(self, _, packedVals):
|
||||
for valArr in packedVals: # 从流输入获取值
|
||||
if valArr[0]=='u': self.dataList.append(valArr[1])
|
||||
elif valArr[0]=='w': self.w = valArr[1]
|
||||
elif valArr[0]=='t': self.t = valArr[1]
|
||||
labels = self.data[:,-1]; X=self.data[:,0:-1]
|
||||
wMat = mat(self.w); wDelta = mat(zeros(len(self.w)))
|
||||
for index in self.dataList:
|
||||
wDelta += float(labels[index])*X[index,:] #wDelta += label*dataSet
|
||||
eta = 1.0/(2.0*self.t) #calc new: eta
|
||||
#calc new: w = (1.0 - 1/t)*w + (eta/k)*wDelta
|
||||
wMat = (1.0 - 1.0/self.t)*wMat + (eta/self.k)*wDelta
|
||||
for mapperNum in range(1,self.numMappers+1):
|
||||
yield (mapperNum, ['w', wMat.tolist()[0] ]) #发出 w
|
||||
if self.t < self.options.iterations:
|
||||
yield (mapperNum, ['t', self.t+1])# 增量 T
|
||||
for j in range(self.k/self.numMappers):#emit random ints for mappers iid
|
||||
yield (mapperNum, ['x', random.randint(shape(self.data)[0]) ])
|
||||
|
||||
def steps(self):
|
||||
return ([self.mr(mapper=self.map, reducer=self.reduce,
|
||||
mapper_final=self.map_fin)]*self.options.iterations)
|
||||
|
||||
if __name__ == '__main__':
|
||||
MRsvm.run()
|
||||
13
src/python/15.BigData_MapReduce/mrSVMkickStart.py
Normal file
13
src/python/15.BigData_MapReduce/mrSVMkickStart.py
Normal file
@@ -0,0 +1,13 @@
|
||||
'''
|
||||
Created on Feb 27, 2011
|
||||
|
||||
@author: Peter
|
||||
'''
|
||||
from mrjob.protocol import JSONProtocol
|
||||
from numpy import *
|
||||
|
||||
fw=open('kickStart2.txt', 'w')
|
||||
for i in [1]:
|
||||
for j in range(100):
|
||||
fw.write('["x", %d]\n' % random.randint(200))
|
||||
fw.close()
|
||||
77
src/python/15.BigData_MapReduce/pegasos.py
Normal file
77
src/python/15.BigData_MapReduce/pegasos.py
Normal file
@@ -0,0 +1,77 @@
|
||||
'''
|
||||
Created on 2017-04-07
|
||||
Sequential Pegasos
|
||||
the input T is k*T in Batch Pegasos
|
||||
@author: Peter/ApacheCN-xy
|
||||
'''
|
||||
|
||||
from numpy import *
|
||||
|
||||
def loadDataSet(fileName):
|
||||
dataMat = []; labelMat = []
|
||||
fr = open(fileName)
|
||||
for line in fr.readlines():
|
||||
lineArr = line.strip().split('\t')
|
||||
#dataMat.append([float(lineArr[0]), float(lineArr[1]), float(lineArr[2])])
|
||||
dataMat.append([float(lineArr[0]), float(lineArr[1])])
|
||||
labelMat.append(float(lineArr[2]))
|
||||
return dataMat,labelMat
|
||||
|
||||
def seqPegasos(dataSet, labels, lam, T):
|
||||
m,n = shape(dataSet); w = zeros(n)
|
||||
for t in range(1, T+1):
|
||||
i = random.randint(m)
|
||||
eta = 1.0/(lam*t)
|
||||
p = predict(w, dataSet[i,:])
|
||||
if labels[i]*p < 1:
|
||||
w = (1.0 - 1/t)*w + eta*labels[i]*dataSet[i,:]
|
||||
else:
|
||||
w = (1.0 - 1/t)*w
|
||||
print w
|
||||
return w
|
||||
|
||||
def predict(w, x):
|
||||
return w*x.T
|
||||
|
||||
def batchPegasos(dataSet, labels, lam, T, k):
|
||||
m,n = shape(dataSet); w = zeros(n);
|
||||
dataIndex = range(m)
|
||||
for t in range(1, T+1):
|
||||
wDelta = mat(zeros(n)) # 重置 wDelta
|
||||
eta = 1.0/(lam*t)
|
||||
random.shuffle(dataIndex)
|
||||
for j in range(k):# 全部的训练集
|
||||
i = dataIndex[j]
|
||||
p = predict(w, dataSet[i,:]) # mapper 代码
|
||||
if labels[i]*p < 1: # mapper 代码
|
||||
wDelta += labels[i]*dataSet[i,:].A # 累积变化
|
||||
w = (1.0 - 1/t)*w + (eta/k)*wDelta # 在每个 T上应用更改
|
||||
return w
|
||||
|
||||
datArr,labelList = loadDataSet('testSet.txt')
|
||||
datMat = mat(datArr)
|
||||
#finalWs = seqPegasos(datMat, labelList, 2, 5000)
|
||||
finalWs = batchPegasos(datMat, labelList, 2, 50, 100)
|
||||
print finalWs
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
x1=[]; y1=[]; xm1=[]; ym1=[]
|
||||
for i in range(len(labelList)):
|
||||
if labelList[i] == 1.0:
|
||||
x1.append(datMat[i,0]); y1.append(datMat[i,1])
|
||||
else:
|
||||
xm1.append(datMat[i,0]); ym1.append(datMat[i,1])
|
||||
ax.scatter(x1, y1, marker='s', s=90)
|
||||
ax.scatter(xm1, ym1, marker='o', s=50, c='red')
|
||||
x = arange(-6.0, 8.0, 0.1)
|
||||
y = (-finalWs[0,0]*x - 0)/finalWs[0,1]
|
||||
#y2 = (0.43799*x)/0.12316
|
||||
y2 = (0.498442*x)/0.092387 #2 iterations
|
||||
ax.plot(x,y)
|
||||
ax.plot(x,y2,'g-.')
|
||||
ax.axis([-6,8,-4,5])
|
||||
ax.legend(('50 Iterations', '2 Iterations') )
|
||||
plt.show()
|
||||
52
src/python/15.BigData_MapReduce/proximalSVM.py
Normal file
52
src/python/15.BigData_MapReduce/proximalSVM.py
Normal file
@@ -0,0 +1,52 @@
|
||||
'''
|
||||
Created on Feb 25, 2011
|
||||
|
||||
@author: Peter
|
||||
'''
|
||||
import numpy
|
||||
|
||||
def map(key, value):
|
||||
# input key= class for one training example, e.g. "-1.0"
|
||||
classes = [float(item) for item in key.split(",")] # e.g. [-1.0]
|
||||
D = numpy.diag(classes)
|
||||
|
||||
# input value = feature vector for one training example, e.g. "3.0, 7.0, 2.0"
|
||||
featurematrix = [float(item) for item in value.split(",")]
|
||||
A = numpy.matrix(featurematrix)
|
||||
|
||||
# create matrix E and vector e
|
||||
e = numpy.matrix(numpy.ones(len(A)).reshape(len(A),1))
|
||||
E = numpy.matrix(numpy.append(A,-e,axis=1))
|
||||
|
||||
# create a tuple with the values to be used by reducer
|
||||
# and encode it with base64 to avoid potential trouble with '\t' and '\n' used
|
||||
# as default separators in Hadoop Streaming
|
||||
producedvalue = base64.b64encode(pickle.dumps( (E.T*E, E.T*D*e) )
|
||||
|
||||
# note: a single constant key "producedkey" sends to only one reducer
|
||||
# somewhat "atypical" due to low degree of parallism on reducer side
|
||||
print "producedkey\t%s" % (producedvalue)
|
||||
|
||||
def reduce(key, values, mu=0.1):
|
||||
sumETE = None
|
||||
sumETDe = None
|
||||
|
||||
# key isn't used, so ignoring it with _ (underscore).
|
||||
for _, value in values:
|
||||
# unpickle values
|
||||
ETE, ETDe = pickle.loads(base64.b64decode(value))
|
||||
if sumETE == None:
|
||||
# create the I/mu with correct dimensions
|
||||
sumETE = numpy.matrix(numpy.eye(ETE.shape[1])/mu)
|
||||
sumETE += ETE
|
||||
|
||||
if sumETDe == None:
|
||||
# create sumETDe with correct dimensions
|
||||
sumETDe = ETDe
|
||||
else:
|
||||
sumETDe += ETDe
|
||||
|
||||
# note: omega = result[:-1] and gamma = result[-1]
|
||||
# but printing entire vector as output
|
||||
result = sumETE.I*sumETDe
|
||||
print "%s\t%s" % (key, str(result.tolist()))
|
||||
25
src/python/15.BigData_MapReduce/py27dbg.py
Normal file
25
src/python/15.BigData_MapReduce/py27dbg.py
Normal file
@@ -0,0 +1,25 @@
|
||||
'''
|
||||
Created on Feb 27, 2011
|
||||
MapReduce version of Pegasos SVM
|
||||
Using mrjob to automate job flow
|
||||
@author: Peter
|
||||
'''
|
||||
from mrjob.job import MRJob
|
||||
|
||||
import pickle
|
||||
from numpy import *
|
||||
|
||||
class MRsvm(MRJob):
|
||||
|
||||
def map(self, mapperId, inVals): #needs exactly 2 arguments
|
||||
if False: yield
|
||||
yield (1, 22)
|
||||
|
||||
def reduce(self, _, packedVals):
|
||||
yield "fuck ass"
|
||||
|
||||
def steps(self):
|
||||
return ([self.mr(mapper=self.map, reducer=self.reduce)])
|
||||
|
||||
if __name__ == '__main__':
|
||||
MRsvm.run()
|
||||
31
src/python/15.BigData_MapReduce/wc.py
Normal file
31
src/python/15.BigData_MapReduce/wc.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from mrjob.job import MRJob
|
||||
import json
|
||||
|
||||
|
||||
class MRWordCountUtility(MRJob):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(MRWordCountUtility, self).__init__(*args, **kwargs)
|
||||
self.chars = 0
|
||||
self.words = 0
|
||||
self.lines = 0
|
||||
|
||||
def mapper(self, _, line):
|
||||
if False:
|
||||
yield # I'm a generator!
|
||||
|
||||
self.chars += len(line) + 1 # +1 for newline
|
||||
self.words += sum(1 for word in line.split() if word.strip())
|
||||
self.lines += 1
|
||||
|
||||
def mapper_final(self):
|
||||
yield('chars', self.chars)
|
||||
yield('words', self.words)
|
||||
yield('lines', self.lines)
|
||||
|
||||
def reducer(self, key, values):
|
||||
yield(key, sum(values))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
MRWordCountUtility.run()
|
||||
Reference in New Issue
Block a user