更新 15章 代码新格式

This commit is contained in:
jiangzhonglian
2017-09-15 17:03:58 +08:00
parent fc272b1fb4
commit 36127ba24b
2 changed files with 30 additions and 25 deletions

View File

@@ -2,9 +2,11 @@
# coding:utf8
'''
Created on 2017-04-07
Update on 2017-06-20
MapReduce version of Pegasos SVM
Using mrjob to automate job flow
@author: Peter/ApacheCN-xy
@author: Peter/ApacheCN-xy/片刻
《机器学习实战》更新地址https://github.com/apachecn/MachineLearning
'''
from mrjob.job import MRJob
@@ -17,14 +19,14 @@ class MRsvm(MRJob):
def __init__(self, *args, **kwargs):
super(MRsvm, self).__init__(*args, **kwargs)
self.data = pickle.load(open('input/15.BigData_MapReduce/svmDat27'))
self.data = pickle.load(open('/opt/git/MachineLearning/input/15.BigData_MapReduce/svmDat27'))
self.w = 0
self.eta = 0.69
self.dataList = []
self.k = self.options.batchsize
self.numMappers = 1
self.t = 1 # iteration number
def configure_options(self):
super(MRsvm, self).configure_options()
self.add_passthrough_option(
@@ -42,20 +44,20 @@ class MRsvm(MRJob):
self.w = inVals[1]
elif inVals[0] == 'x':
self.dataList.append(inVals[1]) # 累积数据点计算
elif inVals[0] == 't':
elif inVals[0] == 't': # 迭代次数
self.t = inVals[1]
else:
self.eta = inVals # 这用于 debug eta未在map中使用
self.eta = inVals # 这用于 debug eta未在map中使用
def map_fin(self):
labels = self.data[:,-1]
X = self.data[:, 0:-1] # 将数据重新形成 X 和 Y
if self.w == 0:
labels = self.data[:, -1]
X = self.data[:, :-1] # 将数据重新形成 X 和 Y
if self.w == 0:
self.w = [0.001] * shape(X)[1] # 在第一次迭代时,初始化 w
for index in self.dataList:
p = mat(self.w)*X[index, :].T # calc p=w*dataSet[key].T
p = mat(self.w)*X[index, :].T # calc p=w*dataSet[key].T
if labels[index]*p < 1.0:
yield (1, ['u', index]) # 确保一切数据包含相同的key
yield (1, ['u', index]) # 确保一切数据包含相同的key
yield (1, ['w', self.w]) # 它们将在同一个 reducer
yield (1, ['t', self.t])
@@ -66,7 +68,7 @@ class MRsvm(MRJob):
elif valArr[0] == 'w':
self.w = valArr[1]
elif valArr[0] == 't':
self.t = valArr[1]
self.t = valArr[1]
labels = self.data[:, -1]
X = self.data[:, 0:-1]

View File

@@ -1,7 +1,10 @@
#!/usr/bin/python
# coding:utf8
'''
Created on Feb 25, 2011
@author: Peter
Created on 2011-02-25
Update on 2017-06-20
@author: Peter/ApacheCN-xy/片刻
《机器学习实战》更新地址https://github.com/apachecn/MachineLearning
'''
import numpy
@@ -9,28 +12,28 @@ def map(key, value):
# input key= class for one training example, e.g. "-1.0"
classes = [float(item) for item in key.split(",")] # e.g. [-1.0]
D = numpy.diag(classes)
# input value = feature vector for one training example, e.g. "3.0, 7.0, 2.0"
featurematrix = [float(item) for item in value.split(",")]
A = numpy.matrix(featurematrix)
# create matrix E and vector e
e = numpy.matrix(numpy.ones(len(A)).reshape(len(A),1))
E = numpy.matrix(numpy.append(A,-e,axis=1))
e = numpy.matrix(numpy.ones(len(A)).reshape(len(A), 1))
E = numpy.matrix(numpy.append(A, -e, axis=1))
# create a tuple with the values to be used by reducer
# and encode it with base64 to avoid potential trouble with '\t' and '\n' used
# as default separators in Hadoop Streaming
producedvalue = base64.b64encode(pickle.dumps( (E.T*E, E.T*D*e) )
producedvalue = base64.b64encode(pickle.dumps( (E.T*E, E.T*D*e))
# note: a single constant key "producedkey" sends to only one reducer
# somewhat "atypical" due to low degree of parallism on reducer side
print "producedkey\t%s" % (producedvalue)
def reduce(key, values, mu=0.1):
sumETE = None
sumETDe = None
# key isn't used, so ignoring it with _ (underscore).
for _, value in values:
# unpickle values
@@ -39,13 +42,13 @@ def reduce(key, values, mu=0.1):
# create the I/mu with correct dimensions
sumETE = numpy.matrix(numpy.eye(ETE.shape[1])/mu)
sumETE += ETE
if sumETDe == None:
# create sumETDe with correct dimensions
sumETDe = ETDe
else:
sumETDe += ETDe
# note: omega = result[:-1] and gamma = result[-1]
# but printing entire vector as output
result = sumETE.I*sumETDe