决策树测试案例更新完成

This commit is contained in:
jiangzhonglian
2017-02-28 19:05:27 +08:00
parent 7da5afed05
commit a4bcdf74c3
3 changed files with 231 additions and 26 deletions

View File

@@ -9,6 +9,7 @@ Decision Tree Source Code for Machine Learning in Action Ch. 3
'''
from math import log
import operator
import DecisionTreePlot as dtPlot
def createDataSet():
@@ -26,13 +27,18 @@ def createDataSet():
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
# dataSet = [['yes'],
# ['yes'],
# ['no'],
# ['no'],
# ['no']]
labels = ['no surfacing', 'flippers']
# change to discrete values
return dataSet, labels
def calcShannonEnt(dataSet):
"""calcShannonEnt(calculate Shannon entropy 计算香农熵)
"""calcShannonEnt(calculate Shannon entropy 计算label分类标签的香农熵)
Args:
dataSet 数据集
@@ -61,83 +67,136 @@ def calcShannonEnt(dataSet):
prob = float(labelCounts[key])/numEntries
# log base 2
shannonEnt -= prob * log(prob, 2)
print '---', prob, prob * log(prob, 2), shannonEnt
# print '---', prob, prob * log(prob, 2), shannonEnt
return shannonEnt
def splitDataSet(dataSet, axis, value):
"""splitDataSet(通过遍历dataSet数据集求出axis对应的colnum列的值为value的行)
Args:
dataSet 数据集
axis 表示每一行的axis列
value 表示axis列对应的value值
Returns:
axis列为value的数据集该数据集需要排除axis列
Raises:
"""
retDataSet = []
for featVec in dataSet:
# axis列为value的数据集【该数据集需要排除axis列】
if featVec[axis] == value:
# chop out axis used for splitting
reducedFeatVec = featVec[:axis]
'''
请百度查询一下 extend和append的区别
'''
reducedFeatVec.extend(featVec[axis+1:])
# 收集结果值 axis列为value的行【该行需要排除axis列】
retDataSet.append(reducedFeatVec)
return retDataSet
def chooseBestFeatureToSplit(dataSet):
# the last column is used for the labels
"""chooseBestFeatureToSplit(选择最好的特征)
Args:
dataSet 数据集
Returns:
bestFeature 最优的特征列
Raises:
"""
# 求第一行有多少列的 Feature
numFeatures = len(dataSet[0]) - 1
# label的信息熵
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
# 最优的信息增益值, 和最优的Featurn编号
bestInfoGain, bestFeature = 0.0, -1
# iterate over all the features
for i in range(numFeatures):
# create a list of all the examples of this feature
# 获取每一个feature的list集合
featList = [example[i] for example in dataSet]
# get a set of unique values
uniqueVals = set(featList)
# 获取剔重后的集合
uniqueVals = set(featList)
# 创建一个临时的信息熵
newEntropy = 0.0
# 遍历某一列的value集合计算该列的信息熵
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy
if (infoGain > bestInfoGain): #compare this to the best gain so far
bestInfoGain = infoGain #if better than current best, set to best
newEntropy += prob * calcShannonEnt(subDataSet)
# 计算label的信息熵和每个特征的信息熵 的增益值,如果增益值大于最大值,那么效果越好
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature #returns an integer
return bestFeature
def majorityCnt(classList):
"""majorityCnt(选择出线次数最多的一个结果)
Args:
classList label列的集合
Returns:
bestFeature 最优的特征列
Raises:
"""
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
# 倒叙排列classCount得到一个字典集合然后取出第一个就是结果yes/no
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
# print 'sortedClassCount:', sortedClassCount
return sortedClassCount[0][0]
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
# 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
if classList.count(classList[0]) == len(classList):
return classList[0]#stop splitting when all of the classes are equal
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return classList[0]
# 如果数据集只有1列那么最初出现label次数最多的一类作为结果
if len(dataSet[0]) == 1:
return majorityCnt(classList)
# 选择最优的列得到最有列对应的label含义
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
# 初始化myTree
myTree = {bestFeatLabel: {}}
# 注labels列表是可变对象在PYTHON函数中作为参数时传址引用能够被全局修改
# 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
del(labels[bestFeat])
# 取出最优列然后它的branch做分类
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
# 求出剩余的标签label
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
# print 'myTree', value, myTree
return myTree
def classify(inputTree, featLabels, testVec):
# 获取tree的第一个节点值
print '1111', inputTree.keys()
# 获取tree的第一个节点对应的key
firstStr = inputTree.keys()[0]
# 获取第一个节点对应的value值
secondDict = inputTree[firstStr]
# 判断根节点的索引值然后根据testVec来获取对应的树分枝位置
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
# 判断分枝是否结束
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else:
@@ -145,7 +204,7 @@ def classify(inputTree, featLabels, testVec):
return classLabel
def storeTree(inputTree,filename):
def storeTree(inputTree, filename):
import pickle
fw = open(filename, 'w')
pickle.dump(inputTree, fw)
@@ -162,11 +221,23 @@ if __name__ == "__main__":
# 1.创建数据和结果标签
myDat, labels = createDataSet()
print myDat, labels
# print myDat, labels
calcShannonEnt(myDat)
# # 计算label分类标签的香农熵
# calcShannonEnt(myDat)
# import copy
# myTree = createTree(myDat, copy.deepcopy(labels))
# print myTree
# # 求第0列 为 1/0的列的数据集【排除第0列】
# print '1---', splitDataSet(myDat, 0, 1)
# print '0---', splitDataSet(myDat, 0, 0)
# # 计算最好的信息增益的列
# print chooseBestFeatureToSplit(myDat)
import copy
myTree = createTree(myDat, copy.deepcopy(labels))
print myTree
# [1, 1]表示要取的分支上的节点位置,对应的结果值
# print classify(myTree, labels, [1, 1])
# 画图可视化展现
dtPlot.createPlot(myTree)

View File

@@ -0,0 +1,132 @@
#!/usr/bin/python
# coding:utf8
'''
Created on Oct 14, 2010
Update on 2017-02-27
Decision Tree Source Code for Machine Learning in Action Ch. 3
@author: Peter Harrington/jiangzhonglian
'''
import matplotlib.pyplot as plt
# 定义文本框 和 箭头格式 【 sawtooth 波浪方框, round4 矩形方框 , fc表示字体颜色的深浅 0.1~0.9 依次变浅,没错是变浅】
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def getNumLeafs(myTree):
numLeafs = 0
firstStr = myTree.keys()[0]
secondDict = myTree[firstStr]
# 根节点开始遍历
for key in secondDict.keys():
# 判断子节点是否为dict, 不是+1
if type(secondDict[key]).__name__ == 'dict':
numLeafs += getNumLeafs(secondDict[key])
else:
numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
maxDepth = 0
firstStr = myTree.keys()[0]
secondDict = myTree[firstStr]
# 根节点开始遍历
for key in secondDict.keys():
# 判断子节点是不是dict, 求分枝的深度
if type(secondDict[key]).__name__ == 'dict':
thisDepth = 1 + getTreeDepth(secondDict[key])
else:
thisDepth = 1
# 记录最大的分支深度
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction', va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):
# 获取叶子节点的数量
numLeafs = getNumLeafs(myTree)
# 获取树的深度
# depth = getTreeDepth(myTree)
# 找出第1个中心点的位置然后与 parentPt定点进行划线
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
# print cntrPt
# 并打印输入对应的文字
plotMidText(cntrPt, parentPt, nodeTxt)
firstStr = myTree.keys()[0]
# 可视化Node分支点
plotNode(firstStr, cntrPt, parentPt, decisionNode)
# 根节点的值
secondDict = myTree[firstStr]
# y值 = 最高点-层数的高度[第二个节点位置]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
for key in secondDict.keys():
# 判断该节点是否是Node节点
if type(secondDict[key]).__name__=='dict':
# 如果是就递归调用[recursion]
plotTree(secondDict[key],cntrPt,str(key))
else:
# 如果不是,就在原来节点一半的地方找到节点的坐标
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
# 可视化该节点位置
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
# 并打印输入对应的文字
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
# plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):
# 创建一个figure的模版
fig = plt.figure(1, facecolor='green')
fig.clf()
axprops = dict(xticks=[], yticks=[])
# 表示创建一个1行1列的图createPlot.ax1 为第 1 个子图,
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
# 半个节点的长度
plotTree.xOff = -0.5/plotTree.totalW
plotTree.yOff = 1.0
plotTree(inTree, (0.5, 1.0), '')
plt.show()
# # 测试画图
# def createPlot():
# fig = plt.figure(1, facecolor='white')
# fig.clf()
# # ticks for demo puropses
# createPlot.ax1 = plt.subplot(111, frameon=False)
# plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
# plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
# plt.show()
# 测试数据集
def retrieveTree(i):
listOfTrees =[
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
]
return listOfTrees[i]
myTree = retrieveTree(0)
createPlot(myTree)