mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-12 23:05:14 +08:00
决策树测试案例更新完成
This commit is contained in:
243
src/python/03.DecisionTree/DecisionTree.py
Normal file
243
src/python/03.DecisionTree/DecisionTree.py
Normal file
@@ -0,0 +1,243 @@
|
||||
#!/usr/bin/python
|
||||
# coding:utf8
|
||||
|
||||
'''
|
||||
Created on Oct 12, 2010
|
||||
Update on 2017-02-27
|
||||
Decision Tree Source Code for Machine Learning in Action Ch. 3
|
||||
@author: Peter Harrington/jiangzhonglian
|
||||
'''
|
||||
from math import log
|
||||
import operator
|
||||
import DecisionTreePlot as dtPlot
|
||||
|
||||
|
||||
def createDataSet():
|
||||
"""DateSet 基础数据集
|
||||
|
||||
Args:
|
||||
无需传入参数
|
||||
Returns:
|
||||
返回数据集和对应的label标签
|
||||
Raises:
|
||||
|
||||
"""
|
||||
dataSet = [[1, 1, 'yes'],
|
||||
[1, 1, 'yes'],
|
||||
[1, 0, 'no'],
|
||||
[0, 1, 'no'],
|
||||
[0, 1, 'no']]
|
||||
# dataSet = [['yes'],
|
||||
# ['yes'],
|
||||
# ['no'],
|
||||
# ['no'],
|
||||
# ['no']]
|
||||
labels = ['no surfacing', 'flippers']
|
||||
# change to discrete values
|
||||
return dataSet, labels
|
||||
|
||||
|
||||
def calcShannonEnt(dataSet):
|
||||
"""calcShannonEnt(calculate Shannon entropy 计算label分类标签的香农熵)
|
||||
|
||||
Args:
|
||||
dataSet 数据集
|
||||
Returns:
|
||||
返回香农熵的计算值
|
||||
Raises:
|
||||
|
||||
"""
|
||||
# 求list的长度,表示计算参与训练的数据量
|
||||
numEntries = len(dataSet)
|
||||
# print type(dataSet), 'numEntries: ', numEntries
|
||||
|
||||
# 计算分类标签label出现的次数
|
||||
labelCounts = {}
|
||||
# the the number of unique elements and their occurance
|
||||
for featVec in dataSet:
|
||||
currentLabel = featVec[-1]
|
||||
if currentLabel not in labelCounts.keys():
|
||||
labelCounts[currentLabel] = 0
|
||||
labelCounts[currentLabel] += 1
|
||||
# print '-----', featVec, labelCounts
|
||||
|
||||
# 对于label标签的占比,求出label标签的香农熵
|
||||
shannonEnt = 0.0
|
||||
for key in labelCounts:
|
||||
prob = float(labelCounts[key])/numEntries
|
||||
# log base 2
|
||||
shannonEnt -= prob * log(prob, 2)
|
||||
# print '---', prob, prob * log(prob, 2), shannonEnt
|
||||
return shannonEnt
|
||||
|
||||
|
||||
def splitDataSet(dataSet, axis, value):
|
||||
"""splitDataSet(通过遍历dataSet数据集,求出axis对应的colnum列的值为value的行)
|
||||
|
||||
Args:
|
||||
dataSet 数据集
|
||||
axis 表示每一行的axis列
|
||||
value 表示axis列对应的value值
|
||||
Returns:
|
||||
axis列为value的数据集【该数据集需要排除axis列】
|
||||
Raises:
|
||||
|
||||
"""
|
||||
retDataSet = []
|
||||
for featVec in dataSet:
|
||||
# axis列为value的数据集【该数据集需要排除axis列】
|
||||
if featVec[axis] == value:
|
||||
# chop out axis used for splitting
|
||||
reducedFeatVec = featVec[:axis]
|
||||
'''
|
||||
请百度查询一下: extend和append的区别
|
||||
'''
|
||||
reducedFeatVec.extend(featVec[axis+1:])
|
||||
# 收集结果值 axis列为value的行【该行需要排除axis列】
|
||||
retDataSet.append(reducedFeatVec)
|
||||
return retDataSet
|
||||
|
||||
|
||||
def chooseBestFeatureToSplit(dataSet):
|
||||
"""chooseBestFeatureToSplit(选择最好的特征)
|
||||
|
||||
Args:
|
||||
dataSet 数据集
|
||||
Returns:
|
||||
bestFeature 最优的特征列
|
||||
Raises:
|
||||
|
||||
"""
|
||||
# 求第一行有多少列的 Feature
|
||||
numFeatures = len(dataSet[0]) - 1
|
||||
# label的信息熵
|
||||
baseEntropy = calcShannonEnt(dataSet)
|
||||
# 最优的信息增益值, 和最优的Featurn编号
|
||||
bestInfoGain, bestFeature = 0.0, -1
|
||||
# iterate over all the features
|
||||
for i in range(numFeatures):
|
||||
# create a list of all the examples of this feature
|
||||
# 获取每一个feature的list集合
|
||||
featList = [example[i] for example in dataSet]
|
||||
# get a set of unique values
|
||||
# 获取剔重后的集合
|
||||
uniqueVals = set(featList)
|
||||
# 创建一个临时的信息熵
|
||||
newEntropy = 0.0
|
||||
# 遍历某一列的value集合,计算该列的信息熵
|
||||
for value in uniqueVals:
|
||||
subDataSet = splitDataSet(dataSet, i, value)
|
||||
prob = len(subDataSet)/float(len(dataSet))
|
||||
newEntropy += prob * calcShannonEnt(subDataSet)
|
||||
# 计算label的信息熵和每个特征的信息熵 的增益值,如果增益值大于最大值,那么效果越好
|
||||
infoGain = baseEntropy - newEntropy
|
||||
if (infoGain > bestInfoGain):
|
||||
bestInfoGain = infoGain
|
||||
bestFeature = i
|
||||
return bestFeature
|
||||
|
||||
|
||||
def majorityCnt(classList):
|
||||
"""majorityCnt(选择出线次数最多的一个结果)
|
||||
|
||||
Args:
|
||||
classList label列的集合
|
||||
Returns:
|
||||
bestFeature 最优的特征列
|
||||
Raises:
|
||||
|
||||
"""
|
||||
classCount = {}
|
||||
for vote in classList:
|
||||
if vote not in classCount.keys():
|
||||
classCount[vote] = 0
|
||||
classCount[vote] += 1
|
||||
# 倒叙排列classCount得到一个字典集合,然后取出第一个就是结果(yes/no)
|
||||
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
|
||||
# print 'sortedClassCount:', sortedClassCount
|
||||
return sortedClassCount[0][0]
|
||||
|
||||
|
||||
def createTree(dataSet, labels):
|
||||
classList = [example[-1] for example in dataSet]
|
||||
# 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
|
||||
if classList.count(classList[0]) == len(classList):
|
||||
return classList[0]
|
||||
# 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
|
||||
if len(dataSet[0]) == 1:
|
||||
return majorityCnt(classList)
|
||||
|
||||
# 选择最优的列,得到最有列对应的label含义
|
||||
bestFeat = chooseBestFeatureToSplit(dataSet)
|
||||
bestFeatLabel = labels[bestFeat]
|
||||
# 初始化myTree
|
||||
myTree = {bestFeatLabel: {}}
|
||||
# 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
|
||||
# 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
|
||||
del(labels[bestFeat])
|
||||
# 取出最优列,然后它的branch做分类
|
||||
featValues = [example[bestFeat] for example in dataSet]
|
||||
uniqueVals = set(featValues)
|
||||
for value in uniqueVals:
|
||||
# 求出剩余的标签label
|
||||
subLabels = labels[:]
|
||||
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
|
||||
# print 'myTree', value, myTree
|
||||
return myTree
|
||||
|
||||
|
||||
def classify(inputTree, featLabels, testVec):
|
||||
# 获取tree的第一个节点对应的key值
|
||||
firstStr = inputTree.keys()[0]
|
||||
# 获取第一个节点对应的value值
|
||||
secondDict = inputTree[firstStr]
|
||||
# 判断根节点的索引值,然后根据testVec来获取对应的树分枝位置
|
||||
featIndex = featLabels.index(firstStr)
|
||||
key = testVec[featIndex]
|
||||
valueOfFeat = secondDict[key]
|
||||
print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
|
||||
# 判断分枝是否结束
|
||||
if isinstance(valueOfFeat, dict):
|
||||
classLabel = classify(valueOfFeat, featLabels, testVec)
|
||||
else:
|
||||
classLabel = valueOfFeat
|
||||
return classLabel
|
||||
|
||||
|
||||
def storeTree(inputTree, filename):
|
||||
import pickle
|
||||
fw = open(filename, 'w')
|
||||
pickle.dump(inputTree, fw)
|
||||
fw.close()
|
||||
|
||||
|
||||
def grabTree(filename):
|
||||
import pickle
|
||||
fr = open(filename)
|
||||
return pickle.load(fr)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# 1.创建数据和结果标签
|
||||
myDat, labels = createDataSet()
|
||||
# print myDat, labels
|
||||
|
||||
# # 计算label分类标签的香农熵
|
||||
# calcShannonEnt(myDat)
|
||||
|
||||
# # 求第0列 为 1/0的列的数据集【排除第0列】
|
||||
# print '1---', splitDataSet(myDat, 0, 1)
|
||||
# print '0---', splitDataSet(myDat, 0, 0)
|
||||
|
||||
# # 计算最好的信息增益的列
|
||||
# print chooseBestFeatureToSplit(myDat)
|
||||
|
||||
import copy
|
||||
myTree = createTree(myDat, copy.deepcopy(labels))
|
||||
print myTree
|
||||
# [1, 1]表示要取的分支上的节点位置,对应的结果值
|
||||
# print classify(myTree, labels, [1, 1])
|
||||
|
||||
# 画图可视化展现
|
||||
dtPlot.createPlot(myTree)
|
||||
Reference in New Issue
Block a user