更新svm画图

This commit is contained in:
jiangzhonglian
2017-07-10 12:55:02 +08:00
parent 6ddc5d0f41
commit be26414de2
2 changed files with 94 additions and 2 deletions

View File

@@ -7,6 +7,7 @@ Updated on 2017-06-28
SVM最大边距分离超平面
@author: 片刻
《机器学习实战》更新地址https://github.com/apachecn/MachineLearning
sklearn-SVM译文链接: http://cwiki.apachecn.org/pages/viewpage.action?pageId=10031359
"""
import numpy as np
import matplotlib.pyplot as plt
@@ -52,7 +53,7 @@ clf.fit(X, Y)
# 获取分割超平面
w = clf.coef_[0]
# 斜率
a = -w[0] / w[1]
a = -w[0]/w[1]
# 从-5到5顺序间隔采样50个样本默认是num=50
# xx = np.linspace(-5, 5) # , num=50)
xx = np.linspace(-2, 10) # , num=50)
@@ -74,7 +75,7 @@ plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none')
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
plt.scatter([X[:, 0]], [X[:, 1]], c=Y, cmap=plt.cm.Paired)
plt.axis('tight')
plt.show()

View File

@@ -0,0 +1,91 @@
#!/usr/bin/python
# coding:utf8
"""
Created on 2017-07-10
Updated on 2017-07-10
@author: 片刻
《机器学习实战》更新地址https://github.com/apachecn/MachineLearning
sklearn-AdaBoost译文链接: http://cwiki.apachecn.org/pages/viewpage.action?pageId=10813457
"""
print(__doc__)
# Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_gaussian_quantiles
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
# Construct dataset
X1, y1 = make_gaussian_quantiles(cov=2.,
n_samples=200, n_features=2,
n_classes=2, random_state=1)
X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5,
n_samples=300, n_features=2,
n_classes=2, random_state=1)
X = np.concatenate((X1, X2))
y = np.concatenate((y1, - y2 + 1))
# Create and fit an AdaBoosted decision tree
bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
algorithm="SAMME",
n_estimators=200)
bdt.fit(X, y)
plot_colors = "br"
plot_step = 0.02
class_names = "AB"
plt.figure(figsize=(10, 5))
# Plot the decision boundaries
plt.subplot(121)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
np.arange(y_min, y_max, plot_step))
Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis("tight")
# Plot the training points
for i, n, c in zip(range(2), class_names, plot_colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1],
c=c, cmap=plt.cm.Paired,
label="Class %s" % n)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Decision Boundary')
# Plot the two-class decision scores
twoclass_output = bdt.decision_function(X)
plot_range = (twoclass_output.min(), twoclass_output.max())
plt.subplot(122)
for i, n, c in zip(range(2), class_names, plot_colors):
plt.hist(twoclass_output[y == i],
bins=10,
range=plot_range,
facecolor=c,
label='Class %s' % n,
alpha=.5)
x1, x2, y1, y2 = plt.axis()
plt.axis((x1, x2, y1, y2 * 1.2))
plt.legend(loc='upper right')
plt.ylabel('Samples')
plt.xlabel('Score')
plt.title('Decision Scores')
plt.tight_layout()
plt.subplots_adjust(wspace=0.35)
plt.show()