# Conflicts:
#	docs/5.Logistic回归.md
This commit is contained in:
yangjifei
2017-03-08 18:37:30 +08:00
19 changed files with 1985 additions and 10 deletions

View File

@@ -1,6 +1,6 @@
# MachineLearning
**Mahchine Leaning in Action (python)**
**Mahchine Leaning in Action (python) | [ApacheCN(apache中文网)](http://www.apache.wiki/display/ML)**
## 第一部分 分类
@@ -20,6 +20,7 @@
* 8) 预测数值型数据:回归
* 9) 数回归
* [树回归](./docs/9.树回归.md)
## 第三部分 无监督学习
@@ -32,7 +33,7 @@
## 第四部分 其他工具
* 13) 使用PCA来简化数据
*[利用PCA来简化数据](./docs/13.利用PCA来简化数据.md)
* [利用PCA来简化数据](./docs/13.利用PCA来简化数据.md)
* 14) 使用SVD简化数据
* 15) 大数据与MapReduce
@@ -44,3 +45,4 @@
* 附录D 资源
* 索引
* 版权声明
* [ApacheCN(apache中文网) 维护更新](http://www.apache.wiki/display/ML)

View File

@@ -5,6 +5,8 @@
* 把无序的数据转换成有用的信息。
* 机器学习的意义
* 我们利用计算机来彰显数据背后的真实含义。
* 机器学习的任务
* 机器学习的主要任务就是分类。
* 监督学习
* 样本集:训练数据 + 测试数据
* 特征(feature-是否有缺失情况) + 目标变量(分类-离散值<A/B/C、 是/否>/回归-连续值<0~100、 -999999>)

View File

@@ -23,3 +23,5 @@
* \\(H = -\sum_{i=0}^np(x_i)\log_2p(x_i)\\) 表示香农熵,用于计算信息熵
* 基尼不纯度(Gini impurity) [本书不做过多的介绍]
* 简单来说:就是从一个数据集中随机选取子项,度量其被错误分类到其他分组里的概率。
* 流程介绍图
* ![决策树流程介绍图](./3.决策树流程介绍图.jpg)

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

13
docs/9.树回归.md Normal file
View File

@@ -0,0 +1,13 @@
# 9) 树回归
* 树回归是什么?
* 分类回归树(Classification and Regression TreeCART)是一种典型的决策树算法CART算法不仅可以应用于分类问题而且可以用于回归问题。
* CART算法构建的回归树并介绍其中的树剪枝技术(该技术主要的目的是防止数的过拟合)
* 树回归的构建
* 优点:可以对复杂和非线性的数据建模。
* 缺点:结果不易理解。
* 适用数据类型:数值型和标称型数据。
* 那么问题来了,如何计算连续型数值的混乱度呢?
* `误差`:也就是计算平均差的总值(总方差=方差*样本数)
* 二元切分方式

View File

@@ -20,10 +20,15 @@ randArray = random.rand(4, 4)
# 转化关系, 数组转化为矩阵
randMat = mat(randArray)
# .I表示对矩阵求逆
# .I表示对矩阵求逆(可以利用矩阵的初等变换
# # 意义逆矩阵是一个判断相似性的工具。逆矩阵A与列向量p相乘后将得到列向量qq的第i个分量表示p与A的第i个列向量的相似度。
# # 参考案例链接:
# # https://www.zhihu.com/question/33258489
# # http://blog.csdn.net/vernice/article/details/48506027
# .T表示对矩阵转置(行列颠倒)
invRandMat = randMat.I
# 输出结果
print randArray, '\n', randMat, '\n', invRandMat
print randArray, '\n---\n', randMat, '\n+++\n', invRandMat
# 矩阵和逆矩阵 进行求积 (单位矩阵对角线都为1嘛理论上4*4的矩阵其他的都为0)
myEye = randMat*invRandMat
# 误差

View File

@@ -104,6 +104,7 @@ def show_pdf(clf):
# from IPython.display import Image
# Image(graph.create_png())
if __name__ == '__main__':
x, y = createDataSet()

View File

@@ -77,9 +77,9 @@ def plotTree(myTree, parentPt, nodeTxt):
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
for key in secondDict.keys():
# 判断该节点是否是Node节点
if type(secondDict[key]).__name__=='dict':
if type(secondDict[key]).__name__ == 'dict':
# 如果是就递归调用[recursion]
plotTree(secondDict[key],cntrPt,str(key))
plotTree(secondDict[key], cntrPt, str(key))
else:
# 如果不是,就在原来节点一半的地方找到节点的坐标
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
@@ -121,7 +121,7 @@ def createPlot(inTree):
# 测试数据集
def retrieveTree(i):
listOfTrees =[
listOfTrees = [
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
]

View File

@@ -0,0 +1,16 @@
#!/usr/bin/python
# coding:utf8
'''
Created on 2017-03-06
Update on 2017-03-06
@author: jiangzhonglian
'''
class treeNode():
def __init__(self, feat, val, right, left):
self.featureToSplitOn = feat
self.valueOfSplit = val
self.rightBranch = right
self.leftBranch = left

View File

@@ -0,0 +1,324 @@
#!/usr/bin/python
# coding:utf8
'''
Created on Feb 4, 2011
Update on 2017-03-02
Tree-Based Regression Methods Source Code for Machine Learning in Action Ch. 9
@author: Peter Harrington/jiangzhonglian
'''
from numpy import *
# 默认解析的数据是用tab分隔并且是数值类型
# general function to parse tab -delimited floats
def loadDataSet(fileName):
"""loadDataSet(解析每一行并转化为float类型)
Args:
fileName 文件名
Returns:
dataMat 每一行的数据集array类型
Raises:
"""
# 假定最后一列是结果值
# assume last column is target value
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
# 将所有的元素转化为float类型
# map all elements to float()
fltLine = map(float, curLine)
dataMat.append(fltLine)
return dataMat
def binSplitDataSet(dataSet, feature, value):
"""binSplitDataSet(将数据集按照feature列的value进行 二元切分)
Args:
dataMat 数据集
feature 特征列
value 特征列要比较的值
Returns:
mat0 小于的数据集在左边
mat1 大于的数据集在右边
Raises:
"""
# # 测试案例
# print 'dataSet[:, feature]=', dataSet[:, feature]
# print 'nonzero(dataSet[:, feature] > value)[0]=', nonzero(dataSet[:, feature] > value)[0]
# print 'nonzero(dataSet[:, feature] <= value)[0]=', nonzero(dataSet[:, feature] <= value)[0]
# dataSet[:, feature] 取去每一行中第1列的值(从0开始算)
# nonzero(dataSet[:, feature] > value) 返回结果为true行的index下标
mat0 = dataSet[nonzero(dataSet[:, feature] <= value)[0], :]
mat1 = dataSet[nonzero(dataSet[:, feature] > value)[0], :]
return mat0, mat1
# 返回每一个叶子结点的均值
# returns the value used for each leaf
def regLeaf(dataSet):
return mean(dataSet[:, -1])
# 计算总方差=方差*样本数
def regErr(dataSet):
# shape(dataSet)[0] 表示行数
return var(dataSet[:, -1]) * shape(dataSet)[0]
# 1.用最佳方式切分数据集
# 2.生成相应的叶节点
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1, 4)):
"""chooseBestSplit(用最佳方式切分数据集 和 生成相应的叶节点)
Args:
dataSet 数据集
leafType 计算叶子节点的函数
errType 求总方差
ops [容许误差下降值,切分的最少样本数]
Returns:
bestIndex feature的index坐标
bestValue 切分的最优值
Raises:
"""
tolS = ops[0]
tolN = ops[1]
# 如果结果集(最后一列为1个变量),就返回推出
# .T 对数据集进行转置
# .tolist()[0] 转化为数组并取第0列
if len(set(dataSet[:, -1].T.tolist()[0])) == 1:
# exit cond 1
return None, leafType(dataSet)
# 计算行列值
m, n = shape(dataSet)
# 无分类误差的总方差和
# the choice of the best feature is driven by Reduction in RSS error from mean
S = errType(dataSet)
# inf 正无穷大
bestS, bestIndex, bestValue = inf, 0, 0
# 循环处理每一列对应的feature值
for featIndex in range(n-1):
for splitVal in set(dataSet[:, featIndex].T.tolist()[0]):
# 对该列进行分组然后组内的成员的val值进行 二元切分
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
# 判断二元切分的方式的元素数量是否符合预期
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
continue
newS = errType(mat0) + errType(mat1)
# 如果二元切分,算出来的误差在可接受范围内,那么就记录切分点,并记录最小误差
if newS < bestS:
bestIndex = featIndex
bestValue = splitVal
bestS = newS
# 判断二元切分的方式的元素误差是否符合预期
# if the decrease (S-bestS) is less than a threshold don't do the split
if (S - bestS) < tolS:
return None, leafType(dataSet)
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
# 对整体的成员进行判断,是否符合预期
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
return None, leafType(dataSet)
return bestIndex, bestValue
# assume dataSet is NumPy Mat so we can array filtering
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1, 4)):
# 选择最好的切分方式: feature索引值最优切分值
# choose the best split
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
# if the splitting hit a stop condition return val
if feat is None:
return val
retTree = {}
retTree['spInd'] = feat
retTree['spVal'] = val
# 大于在右边,小于在左边
lSet, rSet = binSplitDataSet(dataSet, feat, val)
# 递归的进行调用
retTree['left'] = createTree(lSet, leafType, errType, ops)
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree
# 判断节点是否是一个字典
def isTree(obj):
return (type(obj).__name__ == 'dict')
# 计算左右枝丫的均值
def getMean(tree):
if isTree(tree['right']):
tree['right'] = getMean(tree['right'])
if isTree(tree['left']):
tree['left'] = getMean(tree['left'])
return (tree['left']+tree['right'])/2.0
# 检查是否适合合并分枝
def prune(tree, testData):
# 判断是否测试数据集没有数据
if shape(testData)[0] == 0:
return getMean(tree)
# 对测试进行分支看属于哪只分支然后返回tree结果的均值
if (isTree(tree['right']) or isTree(tree['left'])):
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
if isTree(tree['left']):
tree['left'] = prune(tree['left'], lSet)
if isTree(tree['right']):
tree['right'] = prune(tree['right'], rSet)
# 如果左右两边无子分支,那么计算一下总方差 和 该结果集的本身不分枝的总方差比较
# 1.如果测试数据集足够大将tree进行分支到最后
# 2.如果测试数据集不够大,那么就无法进行合并
# 注意返回的结果: 是合并后对原来为字典tree进行赋值相当于进行了合并
if not isTree(tree['left']) and not isTree(tree['right']):
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
# power(x, y)表示x的y次方
errorNoMerge = sum(power(lSet[:, -1] - tree['left'], 2)) + sum(power(rSet[:, -1] - tree['right'], 2))
treeMean = (tree['left'] + tree['right'])/2.0
errorMerge = sum(power(testData[:, -1] - treeMean, 2))
# 如果 合并的总方差 < 不合并的总方差,那么就进行合并
if errorMerge < errorNoMerge:
print "merging"
return treeMean
else:
return tree
else:
return tree
# 得到模型的ws系数f(x) = x0 + x1*featrue1+ x3*featrue2 ...
# create linear model and return coeficients
def modelLeaf(dataSet):
ws, X, Y = linearSolve(dataSet)
return ws
# 计算线性模型的误差值
def modelErr(dataSet):
ws, X, Y = linearSolve(dataSet)
yHat = X * ws
# print corrcoef(yHat, Y, rowvar=0)
return sum(power(Y - yHat, 2))
# helper function used in two places
def linearSolve(dataSet):
m, n = shape(dataSet)
# 产生一个关于1的矩阵
X = mat(ones((m, n)))
Y = mat(ones((m, 1)))
# X的0列为1常数项用于计算平衡误差
X[:, 1: n] = dataSet[:, 0: n-1]
Y = dataSet[:, -1]
# 转置矩阵*矩阵
xTx = X.T * X
# 如果矩阵的逆不存在,会造成程序异常
if linalg.det(xTx) == 0.0:
raise NameError('This matrix is singular, cannot do inverse,\ntry increasing the second value of ops')
# 最小二乘法求最优解
ws = xTx.I * (X.T * Y)
return ws, X, Y
# 回归树测试案例
def regTreeEval(model, inDat):
return float(model)
# 模型树测试案例
def modelTreeEval(model, inDat):
n = shape(inDat)[1]
X = mat(ones((1, n+1)))
X[:, 1: n+1] = inDat
# print X, model
return float(X * model)
# 计算预测的结果
def treeForeCast(tree, inData, modelEval=regTreeEval):
if not isTree(tree):
return modelEval(tree, inData)
if inData[tree['spInd']] <= tree['spVal']:
if isTree(tree['left']):
return treeForeCast(tree['left'], inData, modelEval)
else:
return modelEval(tree['left'], inData)
else:
if isTree(tree['right']):
return treeForeCast(tree['right'], inData, modelEval)
else:
return modelEval(tree['right'], inData)
# 预测结果
def createForeCast(tree, testData, modelEval=regTreeEval):
m = len(testData)
yHat = mat(zeros((m, 1)))
for i in range(m):
yHat[i, 0] = treeForeCast(tree, mat(testData[i]), modelEval)
return yHat
if __name__ == "__main__":
# # 测试数据集
# testMat = mat(eye(4))
# print testMat
# print type(testMat)
# mat0, mat1 = binSplitDataSet(testMat, 1, 0.5)
# print mat0, '\n-----------\n', mat1
# 回归树
# myDat = loadDataSet('testData/RT_data1.txt')
# myDat = loadDataSet('testData/RT_data2.txt')
# myMat = mat(myDat)
# myTree = createTree(myMat)
# 1. 预剪枝就是,提起设置最大误差数和最少元素数
# myDat = loadDataSet('testData/RT_data3.txt')
# myMat = mat(myDat)
# myTree = createTree(myMat, ops=(0, 1))
# print myTree
# 2.后剪枝
# myDatTest = loadDataSet('testData/RT_data3test.txt')
# myMat2Test = mat(myDatTest)
# myFinalTree = prune(myTree, myMat2Test)
# print '\n\n\n-------------------'
# print myFinalTree
# --------
# 模型树求解
# myDat = loadDataSet('testData/RT_data4.txt')
# myMat = mat(myDat)
# myTree = createTree(myMat, modelLeaf, modelErr)
# print myTree
# 回归树 VS 模型树 VS 线性回归
trainMat = mat(loadDataSet('testData/RT_bikeSpeedVsIq_train.txt'))
testMat = mat(loadDataSet('testData/RT_bikeSpeedVsIq_test.txt'))
# 回归树
myTree1 = createTree(trainMat, ops=(1, 20))
print myTree1
yHat1 = createForeCast(myTree1, testMat[:, 0])
print "回归树:", corrcoef(yHat1, testMat[:, 1],rowvar=0)[0, 1]
# 模型树
myTree2 = createTree(trainMat, modelLeaf, modelErr, ops=(1, 20))
yHat2 = createForeCast(myTree2, testMat[:, 0], modelTreeEval)
print myTree2
print "模型树:", corrcoef(yHat2, testMat[:, 1],rowvar=0)[0, 1]
# 线性回归
ws, X, Y = linearSolve(trainMat)
print ws
m = len(testMat[:, 0])
yHat3 = mat(zeros((m, 1)))
for i in range(shape(testMat)[0]):
yHat3[i] = testMat[i, 0]*ws[1, 0] + ws[0, 0]
print "线性回归:", corrcoef(yHat3, testMat[:, 1],rowvar=0)[0, 1]

View File

@@ -11,6 +11,7 @@ import os
from numpy import *
import matplotlib.pylab as plt
def loadDataSet(fileName): #general function to parse tab -delimited floats
numFeat = len(open(fileName).readline().split('\t')) - 1 #get number of fields
dataMat = []; labelMat = []
@@ -24,6 +25,7 @@ def loadDataSet(fileName): #general function to parse tab -delimited floats
labelMat.append(float(curLine[-1]))
return dataMat,labelMat
def standRegres(xArr,yArr):
# >>> A.T # transpose, 转置
xMat = mat(xArr); yMat = mat(yArr).T
@@ -37,6 +39,7 @@ def standRegres(xArr,yArr):
ws = xTx.I * (xMat.T*yMat) # 最小二乘法求最优解
return ws
def plotBestFit(xArr, yArr, ws):
xMat = mat(xArr)
@@ -60,6 +63,7 @@ def plotBestFit(xArr, yArr, ws):
plt.xlabel('X'); plt.ylabel('Y')
plt.show()
def main1():
# w0*x0+w1*x1+w2*x2=f(x)
project_dir = os.path.dirname(os.path.dirname(os.getcwd()))
@@ -91,6 +95,7 @@ def lwlr(testPoint, xArr, yArr,k=1.0):
ws = xTx.I * (xMat.T * (weights * yMat))
return testPoint * ws
def lwlrTest(testArr,xArr,yArr,k=1.0): #loops over all the data points and applies lwlr to each one
m = shape(testArr)[0]
# m*1的矩阵
@@ -101,6 +106,7 @@ def lwlrTest(testArr,xArr,yArr,k=1.0): #loops over all the data points and appl
yHat[i] = lwlr(testArr[i],xArr,yArr,k)
return yHat
def lwlrTestPlot(xArr, yArr, yHat):
xMat = mat(xArr)
@@ -123,11 +129,13 @@ def lwlrTestPlot(xArr, yArr, yHat):
plt.xlabel('X'); plt.ylabel('Y')
plt.show()
def main2():
# w0*x0+w1*x1+w2*x2=f(x)
project_dir = os.path.dirname(os.path.dirname(os.getcwd()))
# project_dir = os.path.dirname(os.path.dirname(os.getcwd()))
# 1.收集并准备数据
xArr, yArr = loadDataSet("%s/resources/ex0.txt" % project_dir)
# xArr, yArr = loadDataSet("%s/resources/ex0.txt" % project_dir)
xArr, yArr = loadDataSet("testData/Regression_data.txt")
# print xArr, '---\n', yArr
# 2.训练模型, f(x)=a1*x1+b2*x2+..+nn*xn中 (a1,b2, .., nn).T的矩阵值
yHat = lwlrTest(xArr, xArr, yArr, 0.003)
@@ -136,12 +144,14 @@ def main2():
# 数据可视化
lwlrTestPlot(xArr, yArr, yHat)
if __name__=="__main__":
if __name__ == "__main__":
# 线性回归
# main1()
# 局部加权线性回归
main2()
def rssError(yArr,yHatArr): #yArr and yHatArr both need to be arrays
return ((yArr-yHatArr)**2).sum()

View File

@@ -0,0 +1,200 @@
12.000000 121.010516
19.000000 157.337044
12.000000 116.031825
15.000000 132.124872
2.000000 52.719612
6.000000 39.058368
3.000000 50.757763
20.000000 166.740333
11.000000 115.808227
21.000000 165.582995
3.000000 41.956087
3.000000 34.432370
13.000000 116.954676
1.000000 32.112553
7.000000 50.380243
7.000000 94.107791
23.000000 188.943179
18.000000 152.637773
9.000000 104.122082
18.000000 127.805226
0.000000 83.083232
15.000000 148.180104
3.000000 38.480247
8.000000 77.597839
7.000000 75.625803
11.000000 124.620208
13.000000 125.186698
5.000000 51.165922
3.000000 31.179113
15.000000 132.505727
19.000000 137.978043
9.000000 106.481123
20.000000 172.149955
11.000000 104.116556
4.000000 22.457996
20.000000 175.735047
18.000000 165.350412
22.000000 177.461724
16.000000 138.672986
17.000000 156.791788
19.000000 150.327544
19.000000 156.992196
23.000000 163.624262
8.000000 92.537227
3.000000 32.341399
16.000000 144.445614
11.000000 119.985586
16.000000 145.149335
12.000000 113.284662
5.000000 47.742716
11.000000 115.852585
3.000000 31.579325
1.000000 43.758671
1.000000 61.049125
13.000000 132.751826
23.000000 163.233087
12.000000 115.134296
8.000000 91.370839
8.000000 86.137955
14.000000 120.857934
3.000000 33.777477
10.000000 110.831763
10.000000 104.174775
20.000000 155.920696
4.000000 30.619132
0.000000 71.880474
7.000000 86.399516
7.000000 72.632906
5.000000 58.632985
18.000000 143.584511
23.000000 187.059504
6.000000 65.067119
6.000000 69.110280
19.000000 142.388056
15.000000 137.174489
21.000000 159.719092
9.000000 102.179638
20.000000 176.416294
21.000000 146.516385
18.000000 147.808343
23.000000 154.790810
16.000000 137.385285
18.000000 166.885975
15.000000 136.989000
20.000000 144.668679
14.000000 137.060671
19.000000 140.468283
11.000000 98.344084
16.000000 132.497910
1.000000 59.143101
20.000000 152.299381
13.000000 134.487271
0.000000 77.805718
3.000000 28.543764
10.000000 97.751817
4.000000 41.223659
11.000000 110.017015
12.000000 119.391386
20.000000 158.872126
2.000000 38.776222
19.000000 150.496148
15.000000 131.505967
22.000000 179.856157
13.000000 143.090102
14.000000 142.611861
13.000000 120.757410
4.000000 27.929324
16.000000 151.530849
15.000000 148.149702
5.000000 44.188084
16.000000 141.135406
12.000000 119.817665
8.000000 80.991524
3.000000 29.308640
6.000000 48.203468
8.000000 92.179834
22.000000 162.720371
10.000000 91.971158
2.000000 33.481943
8.000000 88.528612
1.000000 54.042173
8.000000 92.002928
5.000000 45.614646
3.000000 34.319635
14.000000 129.140558
17.000000 146.807901
17.000000 157.694058
4.000000 37.080929
20.000000 169.942381
10.000000 114.675638
5.000000 34.913029
14.000000 137.889747
0.000000 79.043129
16.000000 139.084390
6.000000 53.340135
13.000000 142.772612
0.000000 73.103173
3.000000 37.717487
15.000000 134.116395
18.000000 138.748257
23.000000 180.779121
10.000000 93.721894
23.000000 166.958335
6.000000 74.473589
6.000000 73.006291
3.000000 34.178656
1.000000 33.395482
22.000000 149.933384
18.000000 154.858982
6.000000 66.121084
1.000000 60.816800
5.000000 55.681020
6.000000 61.251558
15.000000 125.452206
16.000000 134.310255
19.000000 167.999681
5.000000 40.074830
22.000000 162.658997
12.000000 109.473909
4.000000 44.743405
11.000000 122.419496
14.000000 139.852014
21.000000 160.045407
15.000000 131.999358
15.000000 135.577799
20.000000 173.494629
8.000000 82.497177
12.000000 123.122032
10.000000 97.592026
16.000000 141.345706
8.000000 79.588881
3.000000 54.308878
4.000000 36.112937
19.000000 165.005336
23.000000 172.198031
15.000000 127.699625
1.000000 47.305217
13.000000 115.489379
8.000000 103.956569
4.000000 53.669477
0.000000 76.220652
12.000000 114.153306
6.000000 74.608728
3.000000 41.339299
5.000000 21.944048
22.000000 181.455655
20.000000 171.691444
10.000000 104.299002
21.000000 168.307123
20.000000 169.556523
23.000000 175.960552
1.000000 42.554778
14.000000 137.286185
16.000000 136.126561
12.000000 119.269042
6.000000 63.426977
4.000000 27.728212
4.000000 32.687588
23.000000 151.153204
15.000000 129.767331

View File

@@ -0,0 +1,200 @@
3.000000 46.852122
23.000000 178.676107
0.000000 86.154024
6.000000 68.707614
15.000000 139.737693
17.000000 141.988903
12.000000 94.477135
8.000000 86.083788
9.000000 97.265824
7.000000 80.400027
8.000000 83.414554
1.000000 52.525471
16.000000 127.060008
9.000000 101.639269
14.000000 146.412680
15.000000 144.157101
17.000000 152.699910
19.000000 136.669023
21.000000 166.971736
21.000000 165.467251
3.000000 38.455193
6.000000 75.557721
4.000000 22.171763
5.000000 50.321915
0.000000 74.412428
5.000000 42.052392
1.000000 42.489057
14.000000 139.185416
21.000000 140.713725
5.000000 63.222944
5.000000 56.294626
9.000000 91.674826
22.000000 173.497655
17.000000 152.692482
9.000000 113.920633
1.000000 51.552411
9.000000 100.075315
16.000000 137.803868
18.000000 135.925777
3.000000 45.550762
16.000000 149.933224
2.000000 27.914173
6.000000 62.103546
20.000000 173.942381
12.000000 119.200505
6.000000 70.730214
16.000000 156.260832
15.000000 132.467643
19.000000 161.164086
17.000000 138.031844
23.000000 169.747881
11.000000 116.761920
4.000000 34.305905
6.000000 68.841160
10.000000 119.535227
20.000000 158.104763
18.000000 138.390511
5.000000 59.375794
7.000000 80.802300
11.000000 108.611485
10.000000 91.169028
15.000000 154.104819
5.000000 51.100287
3.000000 32.334330
15.000000 150.551655
10.000000 111.023073
0.000000 87.489950
2.000000 46.726299
7.000000 92.540440
15.000000 135.715438
19.000000 152.960552
19.000000 162.789223
21.000000 167.176240
22.000000 164.323358
12.000000 104.823071
1.000000 35.554328
11.000000 114.784640
1.000000 36.819570
12.000000 130.266826
12.000000 126.053312
18.000000 153.378289
7.000000 70.089159
15.000000 139.528624
19.000000 157.137999
23.000000 183.595248
7.000000 73.431043
11.000000 128.176167
22.000000 183.181247
13.000000 112.685801
18.000000 161.634783
6.000000 63.169478
7.000000 63.393975
19.000000 165.779578
14.000000 143.973398
22.000000 185.131852
3.000000 45.275591
6.000000 62.018003
0.000000 83.193398
7.000000 76.847802
19.000000 147.087386
7.000000 62.812086
1.000000 49.910068
11.000000 102.169335
11.000000 105.108121
6.000000 63.429817
12.000000 121.301542
17.000000 163.253962
13.000000 119.588698
0.000000 87.333807
20.000000 144.484066
21.000000 168.792482
23.000000 159.751246
20.000000 162.843592
14.000000 145.664069
19.000000 146.838515
12.000000 132.049377
18.000000 155.756119
22.000000 155.686345
7.000000 73.913958
1.000000 66.761881
7.000000 65.855450
6.000000 56.271026
19.000000 155.308523
12.000000 124.372873
17.000000 136.025960
14.000000 132.996861
21.000000 172.639791
17.000000 135.672594
8.000000 90.323742
5.000000 62.462698
16.000000 159.048794
14.000000 139.991227
3.000000 37.026678
9.000000 100.839901
9.000000 93.097395
15.000000 123.645221
15.000000 147.327185
1.000000 40.055830
0.000000 88.192829
17.000000 139.174517
22.000000 169.354493
17.000000 136.354272
9.000000 90.692829
7.000000 63.987997
14.000000 128.972231
10.000000 108.433394
2.000000 49.321034
19.000000 171.615671
9.000000 97.894855
0.000000 68.962453
9.000000 72.063371
22.000000 157.000070
12.000000 114.461754
6.000000 58.239465
9.000000 104.601048
8.000000 90.772359
22.000000 164.428791
5.000000 34.804083
5.000000 37.089459
22.000000 177.987605
10.000000 89.439608
6.000000 70.711362
23.000000 181.731482
20.000000 151.538932
7.000000 66.067228
6.000000 61.565125
20.000000 184.441687
9.000000 91.569158
9.000000 98.833425
17.000000 144.352866
9.000000 94.498314
15.000000 121.922732
18.000000 166.408274
10.000000 89.571299
8.000000 75.373772
22.000000 161.001478
8.000000 90.594227
5.000000 57.180933
20.000000 161.643007
8.000000 87.197370
8.000000 95.584308
15.000000 126.207221
7.000000 84.528209
18.000000 161.056986
10.000000 86.762615
1.000000 33.325906
9.000000 105.095502
2.000000 22.440421
9.000000 93.449284
14.000000 106.249595
21.000000 163.254385
22.000000 161.746628
20.000000 152.973085
17.000000 122.918987
7.000000 58.536412
1.000000 45.013277
13.000000 137.294148
10.000000 88.123737
2.000000 45.847376
20.000000 163.385797

200
testData/RT_data1.txt Executable file
View File

@@ -0,0 +1,200 @@
0.036098 0.155096
0.993349 1.077553
0.530897 0.893462
0.712386 0.564858
0.343554 -0.371700
0.098016 -0.332760
0.691115 0.834391
0.091358 0.099935
0.727098 1.000567
0.951949 0.945255
0.768596 0.760219
0.541314 0.893748
0.146366 0.034283
0.673195 0.915077
0.183510 0.184843
0.339563 0.206783
0.517921 1.493586
0.703755 1.101678
0.008307 0.069976
0.243909 -0.029467
0.306964 -0.177321
0.036492 0.408155
0.295511 0.002882
0.837522 1.229373
0.202054 -0.087744
0.919384 1.029889
0.377201 -0.243550
0.814825 1.095206
0.611270 0.982036
0.072243 -0.420983
0.410230 0.331722
0.869077 1.114825
0.620599 1.334421
0.101149 0.068834
0.820802 1.325907
0.520044 0.961983
0.488130 -0.097791
0.819823 0.835264
0.975022 0.673579
0.953112 1.064690
0.475976 -0.163707
0.273147 -0.455219
0.804586 0.924033
0.074795 -0.349692
0.625336 0.623696
0.656218 0.958506
0.834078 1.010580
0.781930 1.074488
0.009849 0.056594
0.302217 -0.148650
0.678287 0.907727
0.180506 0.103676
0.193641 -0.327589
0.343479 0.175264
0.145809 0.136979
0.996757 1.035533
0.590210 1.336661
0.238070 -0.358459
0.561362 1.070529
0.377597 0.088505
0.099142 0.025280
0.539558 1.053846
0.790240 0.533214
0.242204 0.209359
0.152324 0.132858
0.252649 -0.055613
0.895930 1.077275
0.133300 -0.223143
0.559763 1.253151
0.643665 1.024241
0.877241 0.797005
0.613765 1.621091
0.645762 1.026886
0.651376 1.315384
0.697718 1.212434
0.742527 1.087056
0.901056 1.055900
0.362314 -0.556464
0.948268 0.631862
0.000234 0.060903
0.750078 0.906291
0.325412 -0.219245
0.726828 1.017112
0.348013 0.048939
0.458121 -0.061456
0.280738 -0.228880
0.567704 0.969058
0.750918 0.748104
0.575805 0.899090
0.507940 1.107265
0.071769 -0.110946
0.553520 1.391273
0.401152 -0.121640
0.406649 -0.366317
0.652121 1.004346
0.347837 -0.153405
0.081931 -0.269756
0.821648 1.280895
0.048014 0.064496
0.130962 0.184241
0.773422 1.125943
0.789625 0.552614
0.096994 0.227167
0.625791 1.244731
0.589575 1.185812
0.323181 0.180811
0.822443 1.086648
0.360323 -0.204830
0.950153 1.022906
0.527505 0.879560
0.860049 0.717490
0.007044 0.094150
0.438367 0.034014
0.574573 1.066130
0.536689 0.867284
0.782167 0.886049
0.989888 0.744207
0.761474 1.058262
0.985425 1.227946
0.132543 -0.329372
0.346986 -0.150389
0.768784 0.899705
0.848921 1.170959
0.449280 0.069098
0.066172 0.052439
0.813719 0.706601
0.661923 0.767040
0.529491 1.022206
0.846455 0.720030
0.448656 0.026974
0.795072 0.965721
0.118156 -0.077409
0.084248 -0.019547
0.845815 0.952617
0.576946 1.234129
0.772083 1.299018
0.696648 0.845423
0.595012 1.213435
0.648675 1.287407
0.897094 1.240209
0.552990 1.036158
0.332982 0.210084
0.065615 -0.306970
0.278661 0.253628
0.773168 1.140917
0.203693 -0.064036
0.355688 -0.119399
0.988852 1.069062
0.518735 1.037179
0.514563 1.156648
0.976414 0.862911
0.919074 1.123413
0.697777 0.827805
0.928097 0.883225
0.900272 0.996871
0.344102 -0.061539
0.148049 0.204298
0.130052 -0.026167
0.302001 0.317135
0.337100 0.026332
0.314924 -0.001952
0.269681 -0.165971
0.196005 -0.048847
0.129061 0.305107
0.936783 1.026258
0.305540 -0.115991
0.683921 1.414382
0.622398 0.766330
0.902532 0.861601
0.712503 0.933490
0.590062 0.705531
0.723120 1.307248
0.188218 0.113685
0.643601 0.782552
0.520207 1.209557
0.233115 -0.348147
0.465625 -0.152940
0.884512 1.117833
0.663200 0.701634
0.268857 0.073447
0.729234 0.931956
0.429664 -0.188659
0.737189 1.200781
0.378595 -0.296094
0.930173 1.035645
0.774301 0.836763
0.273940 -0.085713
0.824442 1.082153
0.626011 0.840544
0.679390 1.307217
0.578252 0.921885
0.785541 1.165296
0.597409 0.974770
0.014083 -0.132525
0.663870 1.187129
0.552381 1.369630
0.683886 0.999985
0.210334 -0.006899
0.604529 1.212685
0.250744 0.046297

200
testData/RT_data2.txt Executable file
View File

@@ -0,0 +1,200 @@
1.000000 0.409175 1.883180
1.000000 0.182603 0.063908
1.000000 0.663687 3.042257
1.000000 0.517395 2.305004
1.000000 0.013643 -0.067698
1.000000 0.469643 1.662809
1.000000 0.725426 3.275749
1.000000 0.394350 1.118077
1.000000 0.507760 2.095059
1.000000 0.237395 1.181912
1.000000 0.057534 0.221663
1.000000 0.369820 0.938453
1.000000 0.976819 4.149409
1.000000 0.616051 3.105444
1.000000 0.413700 1.896278
1.000000 0.105279 -0.121345
1.000000 0.670273 3.161652
1.000000 0.952758 4.135358
1.000000 0.272316 0.859063
1.000000 0.303697 1.170272
1.000000 0.486698 1.687960
1.000000 0.511810 1.979745
1.000000 0.195865 0.068690
1.000000 0.986769 4.052137
1.000000 0.785623 3.156316
1.000000 0.797583 2.950630
1.000000 0.081306 0.068935
1.000000 0.659753 2.854020
1.000000 0.375270 0.999743
1.000000 0.819136 4.048082
1.000000 0.142432 0.230923
1.000000 0.215112 0.816693
1.000000 0.041270 0.130713
1.000000 0.044136 -0.537706
1.000000 0.131337 -0.339109
1.000000 0.463444 2.124538
1.000000 0.671905 2.708292
1.000000 0.946559 4.017390
1.000000 0.904176 4.004021
1.000000 0.306674 1.022555
1.000000 0.819006 3.657442
1.000000 0.845472 4.073619
1.000000 0.156258 0.011994
1.000000 0.857185 3.640429
1.000000 0.400158 1.808497
1.000000 0.375395 1.431404
1.000000 0.885807 3.935544
1.000000 0.239960 1.162152
1.000000 0.148640 -0.227330
1.000000 0.143143 -0.068728
1.000000 0.321582 0.825051
1.000000 0.509393 2.008645
1.000000 0.355891 0.664566
1.000000 0.938633 4.180202
1.000000 0.348057 0.864845
1.000000 0.438898 1.851174
1.000000 0.781419 2.761993
1.000000 0.911333 4.075914
1.000000 0.032469 0.110229
1.000000 0.499985 2.181987
1.000000 0.771663 3.152528
1.000000 0.670361 3.046564
1.000000 0.176202 0.128954
1.000000 0.392170 1.062726
1.000000 0.911188 3.651742
1.000000 0.872288 4.401950
1.000000 0.733107 3.022888
1.000000 0.610239 2.874917
1.000000 0.732739 2.946801
1.000000 0.714825 2.893644
1.000000 0.076386 0.072131
1.000000 0.559009 1.748275
1.000000 0.427258 1.912047
1.000000 0.841875 3.710686
1.000000 0.558918 1.719148
1.000000 0.533241 2.174090
1.000000 0.956665 3.656357
1.000000 0.620393 3.522504
1.000000 0.566120 2.234126
1.000000 0.523258 1.859772
1.000000 0.476884 2.097017
1.000000 0.176408 0.001794
1.000000 0.303094 1.231928
1.000000 0.609731 2.953862
1.000000 0.017774 -0.116803
1.000000 0.622616 2.638864
1.000000 0.886539 3.943428
1.000000 0.148654 -0.328513
1.000000 0.104350 -0.099866
1.000000 0.116868 -0.030836
1.000000 0.516514 2.359786
1.000000 0.664896 3.212581
1.000000 0.004327 0.188975
1.000000 0.425559 1.904109
1.000000 0.743671 3.007114
1.000000 0.935185 3.845834
1.000000 0.697300 3.079411
1.000000 0.444551 1.939739
1.000000 0.683753 2.880078
1.000000 0.755993 3.063577
1.000000 0.902690 4.116296
1.000000 0.094491 -0.240963
1.000000 0.873831 4.066299
1.000000 0.991810 4.011834
1.000000 0.185611 0.077710
1.000000 0.694551 3.103069
1.000000 0.657275 2.811897
1.000000 0.118746 -0.104630
1.000000 0.084302 0.025216
1.000000 0.945341 4.330063
1.000000 0.785827 3.087091
1.000000 0.530933 2.269988
1.000000 0.879594 4.010701
1.000000 0.652770 3.119542
1.000000 0.879338 3.723411
1.000000 0.764739 2.792078
1.000000 0.504884 2.192787
1.000000 0.554203 2.081305
1.000000 0.493209 1.714463
1.000000 0.363783 0.885854
1.000000 0.316465 1.028187
1.000000 0.580283 1.951497
1.000000 0.542898 1.709427
1.000000 0.112661 0.144068
1.000000 0.816742 3.880240
1.000000 0.234175 0.921876
1.000000 0.402804 1.979316
1.000000 0.709423 3.085768
1.000000 0.867298 3.476122
1.000000 0.993392 3.993679
1.000000 0.711580 3.077880
1.000000 0.133643 -0.105365
1.000000 0.052031 -0.164703
1.000000 0.366806 1.096814
1.000000 0.697521 3.092879
1.000000 0.787262 2.987926
1.000000 0.476710 2.061264
1.000000 0.721417 2.746854
1.000000 0.230376 0.716710
1.000000 0.104397 0.103831
1.000000 0.197834 0.023776
1.000000 0.129291 -0.033299
1.000000 0.528528 1.942286
1.000000 0.009493 -0.006338
1.000000 0.998533 3.808753
1.000000 0.363522 0.652799
1.000000 0.901386 4.053747
1.000000 0.832693 4.569290
1.000000 0.119002 -0.032773
1.000000 0.487638 2.066236
1.000000 0.153667 0.222785
1.000000 0.238619 1.089268
1.000000 0.208197 1.487788
1.000000 0.750921 2.852033
1.000000 0.183403 0.024486
1.000000 0.995608 3.737750
1.000000 0.151311 0.045017
1.000000 0.126804 0.001238
1.000000 0.983153 3.892763
1.000000 0.772495 2.819376
1.000000 0.784133 2.830665
1.000000 0.056934 0.234633
1.000000 0.425584 1.810782
1.000000 0.998709 4.237235
1.000000 0.707815 3.034768
1.000000 0.413816 1.742106
1.000000 0.217152 1.169250
1.000000 0.360503 0.831165
1.000000 0.977989 3.729376
1.000000 0.507953 1.823205
1.000000 0.920771 4.021970
1.000000 0.210542 1.262939
1.000000 0.928611 4.159518
1.000000 0.580373 2.039114
1.000000 0.841390 4.101837
1.000000 0.681530 2.778672
1.000000 0.292795 1.228284
1.000000 0.456918 1.736620
1.000000 0.134128 -0.195046
1.000000 0.016241 -0.063215
1.000000 0.691214 3.305268
1.000000 0.582002 2.063627
1.000000 0.303102 0.898840
1.000000 0.622598 2.701692
1.000000 0.525024 1.992909
1.000000 0.996775 3.811393
1.000000 0.881025 4.353857
1.000000 0.723457 2.635641
1.000000 0.676346 2.856311
1.000000 0.254625 1.352682
1.000000 0.488632 2.336459
1.000000 0.519875 2.111651
1.000000 0.160176 0.121726
1.000000 0.609483 3.264605
1.000000 0.531881 2.103446
1.000000 0.321632 0.896855
1.000000 0.845148 4.220850
1.000000 0.012003 -0.217283
1.000000 0.018883 -0.300577
1.000000 0.071476 0.006014

200
testData/RT_data3.txt Executable file
View File

@@ -0,0 +1,200 @@
0.228628 -2.266273
0.965969 112.386764
0.342761 -31.584855
0.901444 87.300625
0.585413 125.295113
0.334900 18.976650
0.769043 64.041941
0.297107 -1.798377
0.901421 100.133819
0.176523 0.946348
0.710234 108.553919
0.981980 86.399637
0.085873 -10.137104
0.537834 90.995536
0.806158 62.877698
0.708890 135.416767
0.787755 118.642009
0.463241 17.171057
0.300318 -18.051318
0.815215 118.319942
0.139880 7.336784
0.068373 -15.160836
0.457563 -34.044555
0.665652 105.547997
0.084661 -24.132226
0.954711 100.935789
0.953902 130.926480
0.487381 27.729263
0.759504 81.106762
0.454312 -20.360067
0.295993 -14.988279
0.156067 7.557349
0.428582 15.224266
0.847219 76.240984
0.499171 11.924204
0.203993 -22.379119
0.548539 83.114502
0.790312 110.159730
0.937766 119.949824
0.218321 1.410768
0.223200 15.501642
0.896683 107.001620
0.582311 82.589328
0.698920 92.470636
0.823848 59.342323
0.385021 24.816941
0.061219 6.695567
0.841547 115.669032
0.763328 115.199195
0.934853 115.753994
0.222271 -9.255852
0.217214 -3.958752
0.706961 106.180427
0.888426 94.896354
0.549814 137.267576
0.107960 -1.293195
0.085111 37.820659
0.388789 21.578007
0.467383 -9.712925
0.623909 87.181863
0.373501 -8.228297
0.513332 101.075609
0.350725 -40.086564
0.716211 103.345308
0.731636 73.912028
0.273863 -9.457556
0.211633 -8.332207
0.944221 100.120253
0.053764 -13.731698
0.126833 22.891675
0.952833 100.649591
0.391609 3.001104
0.560301 82.903945
0.124723 -1.402796
0.465680 -23.777531
0.699873 115.586605
0.164134 -27.405211
0.455761 9.841938
0.508542 96.403373
0.138619 -29.087463
0.335182 2.768225
0.908629 118.513475
0.546601 96.319043
0.378965 13.583555
0.968621 98.648346
0.637999 91.656617
0.350065 -1.319852
0.632691 93.645293
0.936524 65.548418
0.310956 -49.939516
0.437652 19.745224
0.166765 -14.740059
0.571214 114.872056
0.952377 73.520802
0.665329 121.980607
0.258070 -20.425137
0.912161 85.005351
0.777582 100.838446
0.642707 82.500766
0.885676 108.045948
0.080061 2.229873
0.039914 11.220099
0.958512 135.837013
0.377383 5.241196
0.661073 115.687524
0.454375 3.043912
0.412516 -26.419289
0.854970 89.209930
0.698472 120.521925
0.465561 30.051931
0.328890 39.783113
0.309133 8.814725
0.418943 44.161493
0.553797 120.857321
0.799873 91.368473
0.811363 112.981216
0.785574 107.024467
0.949198 105.752508
0.666452 120.014736
0.652462 112.715799
0.290749 -14.391613
0.508548 93.292829
0.680486 110.367074
0.356790 -19.526539
0.199903 -3.372472
0.264926 5.280579
0.166431 -6.512506
0.370042 -32.124495
0.628061 117.628346
0.228473 19.425158
0.044737 3.855393
0.193282 18.208423
0.519150 116.176162
0.351478 -0.461116
0.872199 111.552716
0.115150 13.795828
0.324274 -13.189243
0.446196 -5.108172
0.613004 168.180746
0.533511 129.766743
0.740859 93.773929
0.667851 92.449664
0.900699 109.188248
0.599142 130.378529
0.232802 1.222318
0.838587 134.089674
0.284794 35.623746
0.130626 -39.524461
0.642373 140.613941
0.786865 100.598825
0.403228 -1.729244
0.883615 95.348184
0.910975 106.814667
0.819722 70.054508
0.798198 76.853728
0.606417 93.521396
0.108801 -16.106164
0.318309 -27.605424
0.856421 107.166848
0.842940 95.893131
0.618868 76.917665
0.531944 124.795495
0.028546 -8.377094
0.915263 96.717610
0.925782 92.074619
0.624827 105.970743
0.331364 -1.290825
0.341700 -23.547711
0.342155 -16.930416
0.729397 110.902830
0.640515 82.713621
0.228751 -30.812912
0.948822 69.318649
0.706390 105.062147
0.079632 29.420068
0.451087 -28.724685
0.833026 76.723835
0.589806 98.674874
0.426711 -21.594268
0.872883 95.887712
0.866451 94.402102
0.960398 123.559747
0.483803 5.224234
0.811602 99.841379
0.757527 63.549854
0.569327 108.435392
0.841625 60.552308
0.264639 2.557923
0.202161 -1.983889
0.055862 -3.131497
0.543843 98.362010
0.689099 112.378209
0.956951 82.016541
0.382037 -29.007783
0.131833 22.478291
0.156273 0.225886
0.000256 9.668106
0.892999 82.436686
0.206207 -12.619036
0.487537 5.149336

200
testData/RT_data3test.txt Executable file
View File

@@ -0,0 +1,200 @@
0.421862 10.830241
0.105349 -2.241611
0.155196 21.872976
0.161152 2.015418
0.382632 -38.778979
0.017710 20.109113
0.129656 15.266887
0.613926 111.900063
0.409277 1.874731
0.807556 111.223754
0.593722 133.835486
0.953239 110.465070
0.257402 15.332899
0.645385 93.983054
0.563460 93.645277
0.408338 -30.719878
0.874394 91.873505
0.263805 -0.192752
0.411198 10.751118
0.449884 9.211901
0.646315 113.533660
0.673718 125.135638
0.805148 113.300462
0.759327 72.668572
0.519172 82.131698
0.741031 106.777146
0.030937 9.859127
0.268848 -34.137955
0.474901 -11.201301
0.588266 120.501998
0.893936 142.826476
0.870990 105.751746
0.430763 39.146258
0.057665 15.371897
0.100076 9.131761
0.980716 116.145896
0.235289 -13.691224
0.228098 16.089151
0.622248 99.345551
0.401467 -1.694383
0.960334 110.795415
0.031214 -5.330042
0.504228 96.003525
0.779660 75.921582
0.504496 101.341462
0.850974 96.293064
0.701119 102.333839
0.191551 5.072326
0.667116 92.310019
0.555584 80.367129
0.680006 132.965442
0.393899 38.605283
0.048940 -9.861871
0.963282 115.407485
0.655496 104.269918
0.576463 141.127267
0.675708 96.227996
0.853457 114.252288
0.003933 -12.182861
0.549512 97.927224
0.218967 -4.712462
0.659972 120.950439
0.008256 8.026816
0.099500 -14.318434
0.352215 -3.747546
0.874926 89.247356
0.635084 99.496059
0.039641 14.147109
0.665111 103.298719
0.156583 -2.540703
0.648843 119.333019
0.893237 95.209585
0.128807 5.558479
0.137438 5.567685
0.630538 98.462792
0.296084 -41.799438
0.632099 84.895098
0.987681 106.726447
0.744909 111.279705
0.862030 104.581156
0.080649 -7.679985
0.831277 59.053356
0.198716 26.878801
0.860932 90.632930
0.883250 92.759595
0.818003 110.272219
0.949216 115.200237
0.460078 -35.957981
0.561077 93.545761
0.863767 114.125786
0.476891 -29.774060
0.537826 81.587922
0.686224 110.911198
0.982327 119.114523
0.944453 92.033481
0.078227 30.216873
0.782937 92.588646
0.465886 2.222139
0.885024 90.247890
0.186077 7.144415
0.915828 84.010074
0.796649 115.572156
0.127821 28.933688
0.433429 6.782575
0.946796 108.574116
0.386915 -17.404601
0.561192 92.142700
0.182490 10.764616
0.878792 95.289476
0.381342 -6.177464
0.358474 -11.731754
0.270647 13.793201
0.488904 -17.641832
0.106773 5.684757
0.270112 4.335675
0.754985 75.860433
0.585174 111.640154
0.458821 12.029692
0.218017 -26.234872
0.583887 99.413850
0.923626 107.802298
0.833620 104.179678
0.870691 93.132591
0.249896 -8.618404
0.748230 109.160652
0.019365 34.048884
0.837588 101.239275
0.529251 115.514729
0.742898 67.038771
0.522034 64.160799
0.498982 3.983061
0.479439 24.355908
0.314834 -14.256200
0.753251 85.017092
0.479362 -17.480446
0.950593 99.072784
0.718623 58.080256
0.218720 -19.605593
0.664113 94.437159
0.942900 131.725134
0.314226 18.904871
0.284509 11.779346
0.004962 -14.624176
0.224087 -50.547649
0.974331 112.822725
0.894610 112.863995
0.167350 0.073380
0.753644 105.024456
0.632241 108.625812
0.314189 -6.090797
0.965527 87.418343
0.820919 94.610538
0.144107 -4.748387
0.072556 -5.682008
0.002447 29.685714
0.851007 79.632376
0.458024 -12.326026
0.627503 139.458881
0.422259 -29.827405
0.714659 63.480271
0.672320 93.608554
0.498592 37.112975
0.698906 96.282845
0.861441 99.699230
0.112425 -12.419909
0.164784 5.244704
0.481531 -18.070497
0.375482 1.779411
0.089325 -14.216755
0.036609 -6.264372
0.945004 54.723563
0.136608 14.970936
0.292285 -41.723711
0.029195 -0.660279
0.998307 100.124230
0.303928 -5.492264
0.957863 117.824392
0.815089 113.377704
0.466399 -10.249874
0.876693 115.617275
0.536121 102.997087
0.373984 -37.359936
0.565162 74.967476
0.085412 -21.449563
0.686411 64.859620
0.908752 107.983366
0.982829 98.005424
0.052766 -42.139502
0.777552 91.899340
0.374316 -3.522501
0.060231 10.008227
0.526225 87.317722
0.583872 67.104433
0.238276 10.615159
0.678747 60.624273
0.067649 15.947398
0.530182 105.030933
0.869389 104.969996
0.698410 75.460417
0.549430 82.558068

200
testData/RT_data4.txt Executable file
View File

@@ -0,0 +1,200 @@
0.070670 3.470829
0.534076 6.377132
0.747221 8.949407
0.668970 8.034081
0.586082 6.997721
0.764962 9.318110
0.658125 7.880333
0.346734 4.213359
0.313967 3.762496
0.601418 7.188805
0.404396 4.893403
0.154345 3.683175
0.984061 11.712928
0.597514 7.146694
0.005144 3.333150
0.142295 3.743681
0.280007 3.737376
0.542008 6.494275
0.466781 5.532255
0.706970 8.476718
0.191038 3.673921
0.756591 9.176722
0.912879 10.850358
0.524701 6.067444
0.306090 3.681148
0.429009 5.032168
0.695091 8.209058
0.984495 11.909595
0.702748 8.298454
0.551771 6.715210
0.272894 3.983313
0.014611 3.559081
0.699852 8.417306
0.309710 3.739053
0.444877 5.219649
0.717509 8.483072
0.576550 6.894860
0.284200 3.792626
0.675922 8.067282
0.304401 3.671373
0.233675 3.795962
0.453779 5.477533
0.900938 10.701447
0.502418 6.046703
0.781843 9.254690
0.226271 3.546938
0.619535 7.703312
0.519998 6.202835
0.399447 4.934647
0.785298 9.497564
0.010767 3.565835
0.696399 8.307487
0.524366 6.266060
0.396583 4.611390
0.059988 3.484805
0.946702 11.263118
0.417559 4.895128
0.609194 7.239316
0.730687 8.858371
0.586694 7.061601
0.829567 9.937968
0.964229 11.521595
0.276813 3.756406
0.987041 11.947913
0.876107 10.440538
0.747582 8.942278
0.117348 3.567821
0.188617 3.976420
0.416655 4.928907
0.192995 3.978365
0.244888 3.777018
0.806349 9.685831
0.417555 4.990148
0.233805 3.740022
0.357325 4.325355
0.190201 3.638493
0.705127 8.432886
0.336599 3.868493
0.473786 5.871813
0.384794 4.830712
0.502217 6.117244
0.788220 9.454959
0.478773 5.681631
0.064296 3.642040
0.332143 3.886628
0.618869 7.312725
0.854981 10.306697
0.570000 6.764615
0.512739 6.166836
0.112285 3.545863
0.723700 8.526944
0.192256 3.661033
0.181268 3.678579
0.196731 3.916622
0.510342 6.026652
0.263713 3.723018
0.141105 3.529595
0.150262 3.552314
0.824724 9.973690
0.588088 6.893128
0.411291 4.856380
0.763717 9.199101
0.212118 3.740024
0.264587 3.742917
0.973524 11.683243
0.250670 3.679117
0.823460 9.743861
0.253752 3.781488
0.838332 10.172180
0.501156 6.113263
0.097275 3.472367
0.667199 7.948868
0.487320 6.022060
0.654640 7.809457
0.906907 10.775188
0.821941 9.936140
0.859396 10.428255
0.078696 3.490510
0.938092 11.252471
0.998868 11.863062
0.025501 3.515624
0.451806 5.441171
0.883872 10.498912
0.583567 6.912334
0.823688 10.003723
0.891032 10.818109
0.879259 10.639263
0.163007 3.662715
0.344263 4.169705
0.796083 9.422591
0.903683 10.978834
0.050129 3.575105
0.605553 7.306014
0.628951 7.556742
0.877052 10.444055
0.829402 9.856432
0.121422 3.638276
0.721517 8.663569
0.066532 3.673471
0.996587 11.782002
0.653384 7.804568
0.739494 8.817809
0.640341 7.636812
0.337828 3.971613
0.220512 3.713645
0.368815 4.381696
0.782509 9.349428
0.645825 7.790882
0.277391 3.834258
0.092569 3.643274
0.284320 3.609353
0.344465 4.023259
0.182523 3.749195
0.385001 4.426970
0.747609 8.966676
0.188907 3.711018
0.806244 9.610438
0.014211 3.517818
0.574813 7.040672
0.714500 8.525624
0.538982 6.393940
0.384638 4.649362
0.915586 10.936577
0.883513 10.441493
0.804148 9.742851
0.466011 5.833439
0.800574 9.638874
0.654980 8.028558
0.348564 4.064616
0.978595 11.720218
0.915906 10.833902
0.285477 3.818961
0.988631 11.684010
0.531069 6.305005
0.181658 3.806995
0.039657 3.356861
0.893344 10.776799
0.355214 4.263666
0.783508 9.475445
0.039768 3.429691
0.546308 6.472749
0.786882 9.398951
0.168282 3.564189
0.374900 4.399040
0.737767 8.888536
0.059849 3.431537
0.861891 10.246888
0.597578 7.112627
0.126050 3.611641
0.074795 3.609222
0.634401 7.627416
0.831633 9.926548
0.019095 3.470285
0.396533 4.773104
0.794973 9.492009
0.889088 10.420003
0.003174 3.587139
0.176767 3.554071
0.943730 11.227731
0.758564 8.885337

200
testData/Regression_data.txt Executable file
View File

@@ -0,0 +1,200 @@
1.000000 0.067732 3.176513
1.000000 0.427810 3.816464
1.000000 0.995731 4.550095
1.000000 0.738336 4.256571
1.000000 0.981083 4.560815
1.000000 0.526171 3.929515
1.000000 0.378887 3.526170
1.000000 0.033859 3.156393
1.000000 0.132791 3.110301
1.000000 0.138306 3.149813
1.000000 0.247809 3.476346
1.000000 0.648270 4.119688
1.000000 0.731209 4.282233
1.000000 0.236833 3.486582
1.000000 0.969788 4.655492
1.000000 0.607492 3.965162
1.000000 0.358622 3.514900
1.000000 0.147846 3.125947
1.000000 0.637820 4.094115
1.000000 0.230372 3.476039
1.000000 0.070237 3.210610
1.000000 0.067154 3.190612
1.000000 0.925577 4.631504
1.000000 0.717733 4.295890
1.000000 0.015371 3.085028
1.000000 0.335070 3.448080
1.000000 0.040486 3.167440
1.000000 0.212575 3.364266
1.000000 0.617218 3.993482
1.000000 0.541196 3.891471
1.000000 0.045353 3.143259
1.000000 0.126762 3.114204
1.000000 0.556486 3.851484
1.000000 0.901144 4.621899
1.000000 0.958476 4.580768
1.000000 0.274561 3.620992
1.000000 0.394396 3.580501
1.000000 0.872480 4.618706
1.000000 0.409932 3.676867
1.000000 0.908969 4.641845
1.000000 0.166819 3.175939
1.000000 0.665016 4.264980
1.000000 0.263727 3.558448
1.000000 0.231214 3.436632
1.000000 0.552928 3.831052
1.000000 0.047744 3.182853
1.000000 0.365746 3.498906
1.000000 0.495002 3.946833
1.000000 0.493466 3.900583
1.000000 0.792101 4.238522
1.000000 0.769660 4.233080
1.000000 0.251821 3.521557
1.000000 0.181951 3.203344
1.000000 0.808177 4.278105
1.000000 0.334116 3.555705
1.000000 0.338630 3.502661
1.000000 0.452584 3.859776
1.000000 0.694770 4.275956
1.000000 0.590902 3.916191
1.000000 0.307928 3.587961
1.000000 0.148364 3.183004
1.000000 0.702180 4.225236
1.000000 0.721544 4.231083
1.000000 0.666886 4.240544
1.000000 0.124931 3.222372
1.000000 0.618286 4.021445
1.000000 0.381086 3.567479
1.000000 0.385643 3.562580
1.000000 0.777175 4.262059
1.000000 0.116089 3.208813
1.000000 0.115487 3.169825
1.000000 0.663510 4.193949
1.000000 0.254884 3.491678
1.000000 0.993888 4.533306
1.000000 0.295434 3.550108
1.000000 0.952523 4.636427
1.000000 0.307047 3.557078
1.000000 0.277261 3.552874
1.000000 0.279101 3.494159
1.000000 0.175724 3.206828
1.000000 0.156383 3.195266
1.000000 0.733165 4.221292
1.000000 0.848142 4.413372
1.000000 0.771184 4.184347
1.000000 0.429492 3.742878
1.000000 0.162176 3.201878
1.000000 0.917064 4.648964
1.000000 0.315044 3.510117
1.000000 0.201473 3.274434
1.000000 0.297038 3.579622
1.000000 0.336647 3.489244
1.000000 0.666109 4.237386
1.000000 0.583888 3.913749
1.000000 0.085031 3.228990
1.000000 0.687006 4.286286
1.000000 0.949655 4.628614
1.000000 0.189912 3.239536
1.000000 0.844027 4.457997
1.000000 0.333288 3.513384
1.000000 0.427035 3.729674
1.000000 0.466369 3.834274
1.000000 0.550659 3.811155
1.000000 0.278213 3.598316
1.000000 0.918769 4.692514
1.000000 0.886555 4.604859
1.000000 0.569488 3.864912
1.000000 0.066379 3.184236
1.000000 0.335751 3.500796
1.000000 0.426863 3.743365
1.000000 0.395746 3.622905
1.000000 0.694221 4.310796
1.000000 0.272760 3.583357
1.000000 0.503495 3.901852
1.000000 0.067119 3.233521
1.000000 0.038326 3.105266
1.000000 0.599122 3.865544
1.000000 0.947054 4.628625
1.000000 0.671279 4.231213
1.000000 0.434811 3.791149
1.000000 0.509381 3.968271
1.000000 0.749442 4.253910
1.000000 0.058014 3.194710
1.000000 0.482978 3.996503
1.000000 0.466776 3.904358
1.000000 0.357767 3.503976
1.000000 0.949123 4.557545
1.000000 0.417320 3.699876
1.000000 0.920461 4.613614
1.000000 0.156433 3.140401
1.000000 0.656662 4.206717
1.000000 0.616418 3.969524
1.000000 0.853428 4.476096
1.000000 0.133295 3.136528
1.000000 0.693007 4.279071
1.000000 0.178449 3.200603
1.000000 0.199526 3.299012
1.000000 0.073224 3.209873
1.000000 0.286515 3.632942
1.000000 0.182026 3.248361
1.000000 0.621523 3.995783
1.000000 0.344584 3.563262
1.000000 0.398556 3.649712
1.000000 0.480369 3.951845
1.000000 0.153350 3.145031
1.000000 0.171846 3.181577
1.000000 0.867082 4.637087
1.000000 0.223855 3.404964
1.000000 0.528301 3.873188
1.000000 0.890192 4.633648
1.000000 0.106352 3.154768
1.000000 0.917886 4.623637
1.000000 0.014855 3.078132
1.000000 0.567682 3.913596
1.000000 0.068854 3.221817
1.000000 0.603535 3.938071
1.000000 0.532050 3.880822
1.000000 0.651362 4.176436
1.000000 0.901225 4.648161
1.000000 0.204337 3.332312
1.000000 0.696081 4.240614
1.000000 0.963924 4.532224
1.000000 0.981390 4.557105
1.000000 0.987911 4.610072
1.000000 0.990947 4.636569
1.000000 0.736021 4.229813
1.000000 0.253574 3.500860
1.000000 0.674722 4.245514
1.000000 0.939368 4.605182
1.000000 0.235419 3.454340
1.000000 0.110521 3.180775
1.000000 0.218023 3.380820
1.000000 0.869778 4.565020
1.000000 0.196830 3.279973
1.000000 0.958178 4.554241
1.000000 0.972673 4.633520
1.000000 0.745797 4.281037
1.000000 0.445674 3.844426
1.000000 0.470557 3.891601
1.000000 0.549236 3.849728
1.000000 0.335691 3.492215
1.000000 0.884739 4.592374
1.000000 0.918916 4.632025
1.000000 0.441815 3.756750
1.000000 0.116598 3.133555
1.000000 0.359274 3.567919
1.000000 0.814811 4.363382
1.000000 0.387125 3.560165
1.000000 0.982243 4.564305
1.000000 0.780880 4.215055
1.000000 0.652565 4.174999
1.000000 0.870030 4.586640
1.000000 0.604755 3.960008
1.000000 0.255212 3.529963
1.000000 0.730546 4.213412
1.000000 0.493829 3.908685
1.000000 0.257017 3.585821
1.000000 0.833735 4.374394
1.000000 0.070095 3.213817
1.000000 0.527070 3.952681
1.000000 0.116163 3.129283