mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-03 18:34:17 +08:00
Merge branch 'master' of https://github.com/jiangzhonglian/MachineLearning; branch 'master' of https://github.com/apachecn/MachineLearning
This commit is contained in:
@@ -75,7 +75,9 @@ def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
||||
Args:
|
||||
dataMatIn: 数据集
|
||||
classLabels: 类别标签
|
||||
C: 常数C
|
||||
C: 松弛变量,允许有些数据点可以处于分隔面的错误一侧。
|
||||
控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
|
||||
可以通过调节该参数达到不同的结果。
|
||||
toler: 容错率
|
||||
maxIter: 退出前最大的循环次数
|
||||
|
||||
@@ -131,6 +133,16 @@ def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
||||
|
||||
|
||||
def kernelTrans(X, A, kTup): # calc the kernel or transform data to a higher dimensional space
|
||||
"""
|
||||
核转换函数
|
||||
Args:
|
||||
X:
|
||||
A:
|
||||
kTup: 核函数的信息
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
m, n = shape(X)
|
||||
K = mat(zeros((m, 1)))
|
||||
if kTup[0] == 'lin':
|
||||
@@ -151,14 +163,23 @@ class optStruct:
|
||||
建立的数据结构来保存所有的重要值
|
||||
"""
|
||||
def __init__(self, dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
|
||||
"""
|
||||
|
||||
Args:
|
||||
dataMatIn:
|
||||
classLabels:
|
||||
C:
|
||||
toler:
|
||||
kTup: 包含核函数信息的元组
|
||||
"""
|
||||
self.X = dataMatIn
|
||||
self.labelMat = classLabels
|
||||
self.C = C
|
||||
self.tol = toler
|
||||
self.m = shape(dataMatIn)[0]
|
||||
self.m = shape(dataMatIn)[0] # 数据的行数
|
||||
self.alphas = mat(zeros((self.m, 1)))
|
||||
self.b = 0
|
||||
self.eCache = mat(zeros((self.m, 2))) # 第一列给出的是eCache是否有效的标志位,第二列给出的是实际的E值。
|
||||
self.eCache = mat(zeros((self.m, 2))) # 误差缓存,第一列给出的是eCache是否有效的标志位,第二列给出的是实际的E值。
|
||||
self.K = mat(zeros((self.m, self.m)))
|
||||
for i in range(self.m):
|
||||
self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
|
||||
@@ -182,6 +203,7 @@ def calcEk(oS, k):
|
||||
|
||||
def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
||||
"""
|
||||
内循环的启发式方法。
|
||||
选择第二个(内循环)alpha的alpha值
|
||||
这里的目标是选择合适的第二个alpha值以保证每次优化中采用最大步长。
|
||||
该函数的误差与第一个alpha值Ei和下标i有关。
|
||||
@@ -204,8 +226,9 @@ def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
||||
Ek = calcEk(oS, k)
|
||||
deltaE = abs(Ei - Ek)
|
||||
if (deltaE > maxDeltaE):
|
||||
maxK = k;
|
||||
maxDeltaE = deltaE;
|
||||
# 选择具有最大步长的j
|
||||
maxK = k
|
||||
maxDeltaE = deltaE
|
||||
Ej = Ek
|
||||
return maxK, Ej
|
||||
else: # 如果是第一次循环,则随机选择一个alpha值
|
||||
@@ -230,30 +253,42 @@ def updateEk(oS, k): # after any alpha has changed update the new value in the
|
||||
|
||||
|
||||
def innerL(i, oS):
|
||||
"""
|
||||
内循环代码
|
||||
Args:
|
||||
i:
|
||||
oS:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
Ei = calcEk(oS, i)
|
||||
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
|
||||
(oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
||||
j, Ej = selectJ(i, oS, Ei) # this has been changed from selectJrand
|
||||
alphaIold = oS.alphas[i].copy();
|
||||
alphaJold = oS.alphas[j].copy();
|
||||
alphaIold = oS.alphas[i].copy()
|
||||
alphaJold = oS.alphas[j].copy()
|
||||
if (oS.labelMat[i] != oS.labelMat[j]):
|
||||
L = max(0, oS.alphas[j] - oS.alphas[i])
|
||||
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
||||
else:
|
||||
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
||||
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
||||
if L == H: print("L==H")
|
||||
return 0
|
||||
if L == H:
|
||||
print("L==H")
|
||||
return 0
|
||||
eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j] # changed for kernel
|
||||
if eta >= 0: print("eta>=0")
|
||||
return 0
|
||||
if eta >= 0:
|
||||
print("eta>=0")
|
||||
return 0
|
||||
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
|
||||
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
|
||||
updateEk(oS, j) # added this for the Ecache
|
||||
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("j not moving enough")
|
||||
return 0
|
||||
updateEk(oS, j) # 更新误差缓存
|
||||
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
|
||||
print("j not moving enough")
|
||||
return 0
|
||||
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) # update i by the same amount as j
|
||||
updateEk(oS, i) # added this for the Ecache #the update is in the oppostie direction
|
||||
updateEk(oS, i) # 更新误差缓存 #the update is in the oppostie direction
|
||||
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (
|
||||
oS.alphas[j] - alphaJold) * oS.K[i, j]
|
||||
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (
|
||||
@@ -269,19 +304,32 @@ def innerL(i, oS):
|
||||
return 0
|
||||
|
||||
|
||||
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)): # full Platt SMO
|
||||
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
|
||||
"""
|
||||
完整SMO算法外循环,与smoSimple有些类似,但这里的循环退出条件更多一些
|
||||
Args:
|
||||
dataMatIn:
|
||||
classLabels:
|
||||
C:
|
||||
toler:
|
||||
maxIter:
|
||||
kTup:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
|
||||
iter = 0
|
||||
entireSet = True;
|
||||
entireSet = True
|
||||
alphaPairsChanged = 0
|
||||
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
||||
alphaPairsChanged = 0
|
||||
if entireSet: # go over all
|
||||
if entireSet: # 在数据集上遍历所有可能的alpha
|
||||
for i in range(oS.m):
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
else: # go over non-bound (railed) alphas
|
||||
else: # 遍历所有的非边界alpha值,也就是不在边界0或C上的值。
|
||||
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
||||
for i in nonBoundIs:
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
@@ -296,7 +344,17 @@ def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)): # full Pl
|
||||
|
||||
|
||||
def calcWs(alphas, dataArr, classLabels):
|
||||
X = mat(dataArr);
|
||||
"""
|
||||
基于alpha计算w值
|
||||
Args:
|
||||
alphas:
|
||||
dataArr:
|
||||
classLabels:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
X = mat(dataArr)
|
||||
labelMat = mat(classLabels).transpose()
|
||||
m, n = shape(X)
|
||||
w = zeros((n, 1))
|
||||
@@ -308,11 +366,11 @@ def calcWs(alphas, dataArr, classLabels):
|
||||
def testRbf(k1=1.3):
|
||||
dataArr, labelArr = loadDataSet('testSetRBF.txt')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) # C=200 important
|
||||
datMat = mat(dataArr);
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
svInd = nonzero(alphas.A > 0)[0]
|
||||
sVs = datMat[svInd] # get matrix of only support vectors
|
||||
labelSV = labelMat[svInd];
|
||||
labelSV = labelMat[svInd]
|
||||
print("there are %d Support Vectors" % shape(sVs)[0])
|
||||
m, n = shape(datMat)
|
||||
errorCount = 0
|
||||
@@ -323,7 +381,7 @@ def testRbf(k1=1.3):
|
||||
print("the training error rate is: %f" % (float(errorCount) / m))
|
||||
dataArr, labelArr = loadDataSet('testSetRBF2.txt')
|
||||
errorCount = 0
|
||||
datMat = mat(dataArr);
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
m, n = shape(datMat)
|
||||
for i in range(m):
|
||||
@@ -346,6 +404,7 @@ def img2vector(filename):
|
||||
def loadImages(dirName):
|
||||
from os import listdir
|
||||
hwLabels = []
|
||||
print(dirName)
|
||||
trainingFileList = listdir(dirName) # load the training set
|
||||
m = len(trainingFileList)
|
||||
trainingMat = zeros((m, 1024))
|
||||
@@ -364,11 +423,11 @@ def loadImages(dirName):
|
||||
def testDigits(kTup=('rbf', 10)):
|
||||
dataArr, labelArr = loadImages('trainingDigits')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
|
||||
datMat = mat(dataArr);
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
svInd = nonzero(alphas.A > 0)[0]
|
||||
sVs = datMat[svInd]
|
||||
labelSV = labelMat[svInd];
|
||||
labelSV = labelMat[svInd]
|
||||
print("there are %d Support Vectors" % shape(sVs)[0])
|
||||
m, n = shape(datMat)
|
||||
errorCount = 0
|
||||
@@ -379,7 +438,7 @@ def testDigits(kTup=('rbf', 10)):
|
||||
print("the training error rate is: %f" % (float(errorCount) / m))
|
||||
dataArr, labelArr = loadImages('testDigits')
|
||||
errorCount = 0
|
||||
datMat = mat(dataArr);
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
m, n = shape(datMat)
|
||||
for i in range(m):
|
||||
@@ -424,8 +483,8 @@ def selectJK(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
||||
Ek = calcEk(oS, k)
|
||||
deltaE = abs(Ei - Ek)
|
||||
if (deltaE > maxDeltaE):
|
||||
maxK = k;
|
||||
maxDeltaE = deltaE;
|
||||
maxK = k
|
||||
maxDeltaE = deltaE
|
||||
Ej = Ek
|
||||
return maxK, Ej
|
||||
else: # in this case (first time around) we don't have any valid eCache values
|
||||
@@ -444,24 +503,27 @@ def innerLK(i, oS):
|
||||
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
|
||||
(oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
||||
j, Ej = selectJ(i, oS, Ei) # this has been changed from selectJrand
|
||||
alphaIold = oS.alphas[i].copy();
|
||||
alphaJold = oS.alphas[j].copy();
|
||||
alphaIold = oS.alphas[i].copy()
|
||||
alphaJold = oS.alphas[j].copy()
|
||||
if (oS.labelMat[i] != oS.labelMat[j]):
|
||||
L = max(0, oS.alphas[j] - oS.alphas[i])
|
||||
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
||||
else:
|
||||
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
||||
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
||||
if L == H: print("L==H")
|
||||
return 0
|
||||
if L == H:
|
||||
print("L==H")
|
||||
return 0
|
||||
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
|
||||
if eta >= 0: print("eta>=0")
|
||||
return 0
|
||||
if eta >= 0:
|
||||
print("eta>=0")
|
||||
return 0
|
||||
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
|
||||
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
|
||||
updateEk(oS, j) # added this for the Ecache
|
||||
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("j not moving enough")
|
||||
return 0
|
||||
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
|
||||
print("j not moving enough")
|
||||
return 0
|
||||
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) # update i by the same amount as j
|
||||
updateEk(oS, i) # added this for the Ecache #the update is in the oppostie direction
|
||||
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (
|
||||
@@ -482,7 +544,7 @@ def innerLK(i, oS):
|
||||
def smoPK(dataMatIn, classLabels, C, toler, maxIter): # full Platt SMO
|
||||
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
|
||||
iter = 0
|
||||
entireSet = True;
|
||||
entireSet = True
|
||||
alphaPairsChanged = 0
|
||||
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
||||
alphaPairsChanged = 0
|
||||
|
||||
Reference in New Issue
Block a user