mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-10 22:05:11 +08:00
336 lines
4.1 KiB
Markdown
336 lines
4.1 KiB
Markdown
# 稀疏矩阵
|
||
|
||
`Scipy` 提供了稀疏矩阵的支持(`scipy.sparse`)。
|
||
|
||
稀疏矩阵主要使用 位置 + 值 的方法来存储矩阵的非零元素,根据存储和使用方式的不同,有如下几种类型的稀疏矩阵:
|
||
|
||
| 类型 | 描述 |
|
||
| --- | --- |
|
||
| `bsr_matrix(arg1[, shape, dtype, copy, blocksize])` | Block Sparse Row matrix |
|
||
| `coo_matrix(arg1[, shape, dtype, copy])` | A sparse matrix in COOrdinate format. |
|
||
| `csc_matrix(arg1[, shape, dtype, copy])` | Compressed Sparse Column matrix |
|
||
| `csr_matrix(arg1[, shape, dtype, copy])` | Compressed Sparse Row matrix |
|
||
| `dia_matrix(arg1[, shape, dtype, copy])` | Sparse matrix with DIAgonal storage |
|
||
| `dok_matrix(arg1[, shape, dtype, copy])` | Dictionary Of Keys based sparse matrix. |
|
||
| `lil_matrix(arg1[, shape, dtype, copy])` | Row-based linked list sparse matrix |
|
||
|
||
在这些存储格式中:
|
||
|
||
* COO 格式在构建矩阵时比较高效
|
||
* CSC 和 CSR 格式在乘法计算时比较高效
|
||
|
||
## 构建稀疏矩阵
|
||
|
||
In [1]:
|
||
|
||
```py
|
||
from scipy.sparse import *
|
||
import numpy as np
|
||
|
||
```
|
||
|
||
创建一个空的稀疏矩阵:
|
||
|
||
In [2]:
|
||
|
||
```py
|
||
coo_matrix((2,3))
|
||
|
||
```
|
||
|
||
Out[2]:
|
||
|
||
```py
|
||
<2x3 sparse matrix of type '<type 'numpy.float64'>'
|
||
with 0 stored elements in COOrdinate format>
|
||
```
|
||
|
||
也可以使用一个已有的矩阵或数组或列表中创建新矩阵:
|
||
|
||
In [3]:
|
||
|
||
```py
|
||
A = coo_matrix([[1,2,0],[0,0,3],[4,0,5]])
|
||
print A
|
||
|
||
```
|
||
|
||
```py
|
||
(0, 0) 1
|
||
(0, 1) 2
|
||
(1, 2) 3
|
||
(2, 0) 4
|
||
(2, 2) 5
|
||
|
||
```
|
||
|
||
不同格式的稀疏矩阵可以相互转化:
|
||
|
||
In [4]:
|
||
|
||
```py
|
||
type(A)
|
||
|
||
```
|
||
|
||
Out[4]:
|
||
|
||
```py
|
||
scipy.sparse.coo.coo_matrix
|
||
```
|
||
|
||
In [5]:
|
||
|
||
```py
|
||
B = A.tocsr()
|
||
type(B)
|
||
|
||
```
|
||
|
||
Out[5]:
|
||
|
||
```py
|
||
scipy.sparse.csr.csr_matrix
|
||
```
|
||
|
||
可以转化为普通矩阵:
|
||
|
||
In [6]:
|
||
|
||
```py
|
||
C = A.todense()
|
||
C
|
||
|
||
```
|
||
|
||
Out[6]:
|
||
|
||
```py
|
||
matrix([[1, 2, 0],
|
||
[0, 0, 3],
|
||
[4, 0, 5]])
|
||
```
|
||
|
||
与向量的乘法:
|
||
|
||
In [7]:
|
||
|
||
```py
|
||
v = np.array([1,0,-1])
|
||
A.dot(v)
|
||
|
||
```
|
||
|
||
Out[7]:
|
||
|
||
```py
|
||
array([ 1, -3, -1])
|
||
```
|
||
|
||
还可以传入一个 `(data, (row, col))` 的元组来构建稀疏矩阵:
|
||
|
||
In [8]:
|
||
|
||
```py
|
||
I = np.array([0,3,1,0])
|
||
J = np.array([0,3,1,2])
|
||
V = np.array([4,5,7,9])
|
||
A = coo_matrix((V,(I,J)),shape=(4,4))
|
||
|
||
```
|
||
|
||
In [9]:
|
||
|
||
```py
|
||
print A
|
||
|
||
```
|
||
|
||
```py
|
||
(0, 0) 4
|
||
(3, 3) 5
|
||
(1, 1) 7
|
||
(0, 2) 9
|
||
|
||
```
|
||
|
||
COO 格式的稀疏矩阵在构建的时候只是简单的将坐标和值加到后面,对于重复的坐标不进行处理:
|
||
|
||
In [10]:
|
||
|
||
```py
|
||
I = np.array([0,0,1,3,1,0,0])
|
||
J = np.array([0,2,1,3,1,0,0])
|
||
V = np.array([1,1,1,1,1,1,1])
|
||
B = coo_matrix((V,(I,J)),shape=(4,4))
|
||
print B
|
||
|
||
```
|
||
|
||
```py
|
||
(0, 0) 1
|
||
(0, 2) 1
|
||
(1, 1) 1
|
||
(3, 3) 1
|
||
(1, 1) 1
|
||
(0, 0) 1
|
||
(0, 0) 1
|
||
|
||
```
|
||
|
||
转换成 CSR 格式会自动将相同坐标的值合并:
|
||
|
||
In [11]:
|
||
|
||
```py
|
||
C = B.tocsr()
|
||
print C
|
||
|
||
```
|
||
|
||
```py
|
||
(0, 0) 3
|
||
(0, 2) 1
|
||
(1, 1) 2
|
||
(3, 3) 1
|
||
|
||
```
|
||
|
||
## 求解微分方程
|
||
|
||
In [12]:
|
||
|
||
```py
|
||
from scipy.sparse import lil_matrix
|
||
from scipy.sparse.linalg import spsolve
|
||
from numpy.linalg import solve, norm
|
||
from numpy.random import rand
|
||
|
||
```
|
||
|
||
构建 `1000 x 1000` 的稀疏矩阵:
|
||
|
||
In [13]:
|
||
|
||
```py
|
||
A = lil_matrix((1000, 1000))
|
||
A[0, :100] = rand(100)
|
||
A[1, 100:200] = A[0, :100]
|
||
A.setdiag(rand(1000))
|
||
|
||
```
|
||
|
||
转化为 CSR 之后,用 `spsolve` 求解 $Ax=b$:
|
||
|
||
In [14]:
|
||
|
||
```py
|
||
A = A.tocsr()
|
||
b = rand(1000)
|
||
x = spsolve(A, b)
|
||
|
||
```
|
||
|
||
转化成正常数组之后求解:
|
||
|
||
In [15]:
|
||
|
||
```py
|
||
x_ = solve(A.toarray(), b)
|
||
|
||
```
|
||
|
||
查看误差:
|
||
|
||
In [16]:
|
||
|
||
```py
|
||
err = norm(x-x_)
|
||
err
|
||
|
||
```
|
||
|
||
Out[16]:
|
||
|
||
```py
|
||
6.4310987107687431e-13
|
||
```
|
||
|
||
## sparse.find 函数
|
||
|
||
返回一个三元组,表示稀疏矩阵中非零元素的 `(row, col, value)`:
|
||
|
||
In [17]:
|
||
|
||
```py
|
||
from scipy import sparse
|
||
|
||
row, col, val = sparse.find(C)
|
||
print row, col, val
|
||
|
||
```
|
||
|
||
```py
|
||
[0 0 1 3] [0 2 1 3] [3 1 2 1]
|
||
|
||
```
|
||
|
||
## sparse.issparse 函数
|
||
|
||
查看一个对象是否为稀疏矩阵:
|
||
|
||
In [18]:
|
||
|
||
```py
|
||
sparse.issparse(B)
|
||
|
||
```
|
||
|
||
Out[18]:
|
||
|
||
```py
|
||
True
|
||
```
|
||
|
||
或者
|
||
|
||
In [19]:
|
||
|
||
```py
|
||
sparse.isspmatrix(B.todense())
|
||
|
||
```
|
||
|
||
Out[19]:
|
||
|
||
```py
|
||
False
|
||
```
|
||
|
||
还可以查询是否为指定格式的稀疏矩阵:
|
||
|
||
In [20]:
|
||
|
||
```py
|
||
sparse.isspmatrix_coo(B)
|
||
|
||
```
|
||
|
||
Out[20]:
|
||
|
||
```py
|
||
True
|
||
```
|
||
|
||
In [21]:
|
||
|
||
```py
|
||
sparse.isspmatrix_csr(B)
|
||
|
||
```
|
||
|
||
Out[21]:
|
||
|
||
```py
|
||
False
|
||
``` |