Files
ailearning/docs/da/084.md
2020-10-27 17:39:13 +08:00

168 lines
36 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 处理文本(数学表达式)
在字符串中使用一对 `$$` 符号可以利用 `Tex` 语法打出数学表达式,而且并不需要预先安装 `Tex`。在使用时我们通常加上 `r` 标记表示它是一个原始字符串raw string
In [1]:
```py
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
```
In [2]:
```py
# plain text
plt.title('alpha > beta')
plt.show()
```
![]()
In [3]:
```py
# math text
plt.title(r'$\alpha > \beta$')
plt.show()
```
![]()
## 上下标
使用 `_``^` 表示上下标:
$\alpha_i > \beta_i$
```py
r'$\alpha_i > \beta_i$'
```
$\sum\limits_{i=0}^\infty x_i$
```py
r'$\sum_{i=0}^\infty x_i$'
```
注:
* 希腊字母和特殊符号可以用 '\ + 对应的名字' 来显示
* `{}` 中的内容属于一个部分;要打出花括号是需要使用 `\{\}`
## 分数二项式系数stacked numbers
$\frac{3}{4}, \binom{3}{4}, \stackrel{3}{4}$
```py
r'$\frac{3}{4}, \binom{3}{4}, \stackrel{3}{4}$'
```
$\frac{5 - \frac{1}{x}}{4}$
```py
r'$\frac{5 - \frac{1}{x}}{4}$'
```
在 Tex 语言中,括号始终是默认的大小,如果要使括号大小与括号内部的大小对应,可以使用 `\left``\right` 选项:
$(\frac{5 - \frac{1}{x}}{4})$
```py
r'$(\frac{5 - \frac{1}{x}}{4})$'
```
$\left(\frac{5 - \frac{1}{x}}{4}\right)$
```py
r'$\left(\frac{5 - \frac{1}{x}}{4}\right)$'
```
## 根号
$\sqrt{2}$
```py
r'$\sqrt{2}$'
```
$\sqrt[3]{x}$
```py
r'$\sqrt[3]{x}$'
```
## 特殊字体
默认显示的字体是斜体,不过可以使用以下方法显示不同的字体:
| 命令 | 显示 |
| --- | --- |
| \mathrm{Roman} | $\mathrm{Roman}$ |
| \mathit{Italic} | $\mathit{Italic}$ |
| \mathtt{Typewriter} | $\mathtt{Typewriter}$ |
| \mathcal{CALLIGRAPHY} | $\mathcal{CALLIGRAPHY}$ |
| \mathbb{blackboard} | $\mathbb{blackboard}$ |
| \mathfrak{Fraktur} | $\mathfrak{Fraktur}$ |
| \mathsf{sansserif} | $\mathsf{sansserif}$ |
$s(t) = \mathcal{A}\ \sin(2 \omega t)$
```py
s(t) = \mathcal{A}\ \sin(2 \omega t)
```
注:
* Tex 语法默认忽略空格,要打出空格使用 `'\ '`
* \sin 默认显示为 Roman 字体
## 音调
| 命令 | 结果 |
| --- | --- |
| `\acute a` | $\acute a$ |
| `\bar a` | $\bar a$ |
| `\breve a` | $\breve a$ |
| `\ddot a` | $\ddot a$ |
| `\dot a` | $\dot a$ |
| `\grave a` | $\grave a$ |
| `\hat a` | $\hat a$ |
| `\tilde a` | $\tilde a$ |
| `\4vec a` | $\vec a$ |
| `\overline{abc}` | $\overline{abc}$ |
| `\widehat{xyz}` | $\widehat{xyz}$ |
| `\widetilde{xyz}` | $\widetilde{xyz}$ |
## 特殊字符表
参见:[http://matplotlib.org/users/mathtext.html#symbols](http://matplotlib.org/users/mathtext.html#symbols)
## 例子
In [4]:
```py
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)
plt.plot(t,s)
plt.title(r'$\alpha_i > \beta_i$', fontsize=20)
plt.text(1, -0.6, r'$\sum_{i=0}^\infty x_i$', fontsize=20)
plt.text(0.6, 0.6, r'$\mathcal{A}\ \mathrm{sin}(2 \omega t)$',
fontsize=20)
plt.xlabel('time (s)')
plt.ylabel('volts (mV)')
plt.show()
```
![]()