mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-10 05:45:40 +08:00
235 lines
50 KiB
Markdown
235 lines
50 KiB
Markdown
# 接口
|
||
|
||
在 `Python` 中,鸭子类型(`duck typing`)是一种动态类型的风格。所谓鸭子类型,来自于 `James Whitcomb Riley` 的“鸭子测试”:
|
||
|
||
> 当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。
|
||
|
||
假设我们需要定义一个函数,这个函数使用一个类型为鸭子的参数,并调用它的走和叫方法。
|
||
|
||
在鸭子类型的语言中,这样的函数可以接受任何类型的对象,只要这个对象实现了走和叫的方法,否则就引发一个运行时错误。换句话说,任何拥有走和叫方法的参数都是合法的。
|
||
|
||
先看一个例子,父类:
|
||
|
||
In [1]:
|
||
|
||
```py
|
||
class Leaf(object):
|
||
def __init__(self, color="green"):
|
||
self.color = color
|
||
def fall(self):
|
||
print "Splat!"
|
||
|
||
```
|
||
|
||
子类:
|
||
|
||
In [2]:
|
||
|
||
```py
|
||
class MapleLeaf(Leaf):
|
||
def fall(self):
|
||
self.color = 'brown'
|
||
super(MapleLeaf, self).fall()
|
||
|
||
```
|
||
|
||
新的类:
|
||
|
||
In [3]:
|
||
|
||
```py
|
||
class Acorn(object):
|
||
def fall(self):
|
||
print "Plunk!"
|
||
|
||
```
|
||
|
||
这三个类都实现了 `fall()` 方法,因此可以这样使用:
|
||
|
||
In [4]:
|
||
|
||
```py
|
||
objects = [Leaf(), MapleLeaf(), Acorn()]
|
||
|
||
for obj in objects:
|
||
obj.fall()
|
||
|
||
```
|
||
|
||
```py
|
||
Splat!
|
||
Splat!
|
||
Plunk!
|
||
|
||
```
|
||
|
||
这里 `fall()` 方法就一种鸭子类型的体现。
|
||
|
||
不仅方法可以用鸭子类型,属性也可以:
|
||
|
||
In [5]:
|
||
|
||
```py
|
||
import numpy as np
|
||
from scipy.ndimage.measurements import label
|
||
|
||
class Forest(object):
|
||
""" Forest can grow trees which eventually die."""
|
||
def __init__(self, size=(150,150), p_sapling=0.0025):
|
||
self.size = size
|
||
self.trees = np.zeros(self.size, dtype=bool)
|
||
self.p_sapling = p_sapling
|
||
|
||
def __repr__(self):
|
||
my_repr = "{}(size={})".format(self.__class__.__name__, self.size)
|
||
return my_repr
|
||
|
||
def __str__(self):
|
||
return self.__class__.__name__
|
||
|
||
@property
|
||
def num_cells(self):
|
||
"""Number of cells available for growing trees"""
|
||
return np.prod(self.size)
|
||
|
||
@property
|
||
def losses(self):
|
||
return np.zeros(self.size)
|
||
|
||
@property
|
||
def tree_fraction(self):
|
||
"""
|
||
Fraction of trees
|
||
"""
|
||
num_trees = self.trees.sum()
|
||
return float(num_trees) / self.num_cells
|
||
|
||
def _rand_bool(self, p):
|
||
"""
|
||
Random boolean distributed according to p, less than p will be True
|
||
"""
|
||
return np.random.uniform(size=self.trees.shape) < p
|
||
|
||
def grow_trees(self):
|
||
"""
|
||
Growing trees.
|
||
"""
|
||
growth_sites = self._rand_bool(self.p_sapling)
|
||
self.trees[growth_sites] = True
|
||
|
||
def advance_one_step(self):
|
||
"""
|
||
Advance one step
|
||
"""
|
||
self.grow_trees()
|
||
|
||
class BurnableForest(Forest):
|
||
"""
|
||
Burnable forest support fires
|
||
"""
|
||
def __init__(self, p_lightning=5.0e-6, **kwargs):
|
||
super(BurnableForest, self).__init__(**kwargs)
|
||
self.p_lightning = p_lightning
|
||
self.fires = np.zeros((self.size), dtype=bool)
|
||
|
||
def advance_one_step(self):
|
||
"""
|
||
Advance one step
|
||
"""
|
||
super(BurnableForest, self).advance_one_step()
|
||
self.start_fires()
|
||
self.burn_trees()
|
||
|
||
@property
|
||
def losses(self):
|
||
return self.fires
|
||
|
||
@property
|
||
def fire_fraction(self):
|
||
"""
|
||
Fraction of fires
|
||
"""
|
||
num_fires = self.fires.sum()
|
||
return float(num_fires) / self.num_cells
|
||
|
||
def start_fires(self):
|
||
"""
|
||
Start of fire.
|
||
"""
|
||
lightning_strikes = (self._rand_bool(self.p_lightning) &
|
||
self.trees)
|
||
self.fires[lightning_strikes] = True
|
||
|
||
def burn_trees(self):
|
||
pass
|
||
|
||
class SlowBurnForest(BurnableForest):
|
||
def burn_trees(self):
|
||
"""
|
||
Burn trees.
|
||
"""
|
||
fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool)
|
||
fires[1:-1, 1:-1] = self.fires
|
||
north = fires[:-2, 1:-1]
|
||
south = fires[2:, 1:-1]
|
||
east = fires[1:-1, :-2]
|
||
west = fires[1:-1, 2:]
|
||
new_fires = (north | south | east | west) & self.trees
|
||
self.trees[self.fires] = False
|
||
self.fires = new_fires
|
||
|
||
class InstantBurnForest(BurnableForest):
|
||
def burn_trees(self):
|
||
# 起火点
|
||
strikes = self.fires
|
||
# 找到连通区域
|
||
groves, num_groves = label(self.trees)
|
||
fires = set(groves[strikes])
|
||
self.fires.fill(False)
|
||
# 将与着火点相连的区域都烧掉
|
||
for fire in fires:
|
||
self.fires[groves == fire] = True
|
||
self.trees[self.fires] = False
|
||
self.fires.fill(False)
|
||
|
||
```
|
||
|
||
测试:
|
||
|
||
In [6]:
|
||
|
||
```py
|
||
forest = Forest()
|
||
b_forest = BurnableForest()
|
||
sb_forest = SlowBurnForest()
|
||
ib_forest = InstantBurnForest()
|
||
|
||
forests = [forest, b_forest, sb_forest, ib_forest]
|
||
|
||
losses_history = []
|
||
|
||
for i in xrange(1500):
|
||
for fst in forests:
|
||
fst.advance_one_step()
|
||
losses_history.append(tuple(fst.losses.sum() for fst in forests))
|
||
|
||
```
|
||
|
||
显示结果:
|
||
|
||
In [7]:
|
||
|
||
```py
|
||
import matplotlib.pyplot as plt
|
||
%matplotlib inline
|
||
|
||
plt.figure(figsize=(10,6))
|
||
|
||
plt.plot(losses_history)
|
||
plt.legend([f.__str__() for f in forests])
|
||
|
||
plt.show()
|
||
|
||
```
|
||
|
||
 |