Files
ailearning/docs/linalg/chapter04.md
2021-05-07 10:20:42 +08:00

82 lines
1.7 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 第四讲:$A$ 的 $LU$ 分解
$AB$的逆矩阵:
$$
\begin{aligned}
A \cdot A^{-1} = I & = A^{-1} \cdot A\\
(AB) \cdot (B^{-1}A^{-1}) & = I\\
\textrm{则} AB \textrm{的逆矩阵为} & B^{-1}A^{-1}
\end{aligned}
$$
$A^{T}$的逆矩阵:
$$
\begin{aligned}
(A \cdot A^{-1})^{T} & = I^{T}\\
(A^{-1})^{T} \cdot A^{T} & = I\\
\textrm{则} A^{T} \textrm{的逆矩阵为} & (A^{-1})^{T}
\end{aligned}
$$
## 将一个 $n$ 阶方阵 $A$ 变换为 $LU$ 需要的计算量估计:
1. 第一步,将$a_{11}$作为主元,需要的运算量约为$n^2$
$$
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn} \\
\end{bmatrix}
\underrightarrow{消元}
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2n} \\
0 & \vdots & \ddots & \vdots \\
0 & a_{n2} & \cdots & a_{nn} \\
\end{bmatrix}
$$
2. 以此类推,接下来每一步计算量约为$(n-1)^2、(n-2)^2、\cdots、2^2、1^2$。
3. 则将 $A$ 变换为 $LU$ 的总运算量应为$O(n^2+(n-1)^2+\cdots+2^2+1^2)$,即$O(\frac{n^3}{3})$。
置换矩阵(Permutation Matrix)
3阶方阵的置换矩阵有6个
$$
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
$$
$n$阶方阵的置换矩阵有$\binom{n}{1}=n!$个。