mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-10 22:05:11 +08:00
82 lines
1.7 KiB
Markdown
82 lines
1.7 KiB
Markdown
|
||
# 第四讲:$A$ 的 $LU$ 分解
|
||
|
||
$AB$的逆矩阵:
|
||
$$
|
||
\begin{aligned}
|
||
A \cdot A^{-1} = I & = A^{-1} \cdot A\\
|
||
(AB) \cdot (B^{-1}A^{-1}) & = I\\
|
||
\textrm{则} AB \textrm{的逆矩阵为} & B^{-1}A^{-1}
|
||
\end{aligned}
|
||
$$
|
||
|
||
$A^{T}$的逆矩阵:
|
||
$$
|
||
\begin{aligned}
|
||
(A \cdot A^{-1})^{T} & = I^{T}\\
|
||
(A^{-1})^{T} \cdot A^{T} & = I\\
|
||
\textrm{则} A^{T} \textrm{的逆矩阵为} & (A^{-1})^{T}
|
||
\end{aligned}
|
||
$$
|
||
|
||
## 将一个 $n$ 阶方阵 $A$ 变换为 $LU$ 需要的计算量估计:
|
||
|
||
1. 第一步,将$a_{11}$作为主元,需要的运算量约为$n^2$
|
||
$$
|
||
\begin{bmatrix}
|
||
a_{11} & a_{12} & \cdots & a_{1n} \\
|
||
a_{21} & a_{22} & \cdots & a_{2n} \\
|
||
\vdots & \vdots & \ddots & \vdots \\
|
||
a_{n1} & a_{n2} & \cdots & a_{nn} \\
|
||
\end{bmatrix}
|
||
\underrightarrow{消元}
|
||
\begin{bmatrix}
|
||
a_{11} & a_{12} & \cdots & a_{1n} \\
|
||
0 & a_{22} & \cdots & a_{2n} \\
|
||
0 & \vdots & \ddots & \vdots \\
|
||
0 & a_{n2} & \cdots & a_{nn} \\
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
2. 以此类推,接下来每一步计算量约为$(n-1)^2、(n-2)^2、\cdots、2^2、1^2$。
|
||
|
||
3. 则将 $A$ 变换为 $LU$ 的总运算量应为$O(n^2+(n-1)^2+\cdots+2^2+1^2)$,即$O(\frac{n^3}{3})$。
|
||
|
||
置换矩阵(Permutation Matrix):
|
||
|
||
3阶方阵的置换矩阵有6个:
|
||
$$
|
||
\begin{bmatrix}
|
||
1 & 0 & 0 \\
|
||
0 & 1 & 0 \\
|
||
0 & 0 & 1 \\
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
0 & 1 & 0 \\
|
||
1 & 0 & 0 \\
|
||
0 & 0 & 1 \\
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
0 & 0 & 1 \\
|
||
0 & 1 & 0 \\
|
||
1 & 0 & 0 \\
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
1 & 0 & 0 \\
|
||
0 & 0 & 1 \\
|
||
0 & 1 & 0 \\
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
0 & 1 & 0 \\
|
||
0 & 0 & 1 \\
|
||
1 & 0 & 0 \\
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
0 & 0 & 1 \\
|
||
1 & 0 & 0 \\
|
||
0 & 1 & 0 \\
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
$n$阶方阵的置换矩阵有$\binom{n}{1}=n!$个。
|