mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-10 05:45:40 +08:00
36 lines
724 B
Markdown
36 lines
724 B
Markdown
|
||
# 第五讲:转换、置换、向量空间R
|
||
|
||
## 置换矩阵(Permutation Matrix)
|
||
|
||
$P$为置换矩阵,对任意可逆矩阵$A$有:
|
||
|
||
$PA=LU$
|
||
|
||
$n$阶方阵的置换矩阵$P$有$\binom{n}{1}=n!$个
|
||
|
||
对置换矩阵$P$,有$P^TP = I$
|
||
|
||
即$P^T = P^{-1}
|
||
## 转置矩阵(Transpose Matrix)
|
||
|
||
$(A^T)_{ij} = (A)_{ji}$
|
||
|
||
## 对称矩阵(Symmetric Matrix)
|
||
|
||
$A^T$ = $A$
|
||
|
||
对任意矩阵$R$有$R^TR$为对称矩阵:
|
||
|
||
$$
|
||
(R^TR)^T = (R)^T(R^T)^T = R^TR\\
|
||
\textrm{即}(R^TR)^T = R^TR
|
||
$$
|
||
|
||
## 向量空间(Vector Space)
|
||
|
||
所有向量空间都必须包含原点(Origin);
|
||
|
||
向量空间中任意向量的数乘、求和运算得到的向量也在该空间中。
|
||
即向量空间要满足加法封闭和数乘封闭。
|