Files
ailearning/docs/linalg/chapter05.md
2021-05-07 10:20:42 +08:00

36 lines
724 B
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 第五讲转换、置换、向量空间R
## 置换矩阵Permutation Matrix
$P$为置换矩阵,对任意可逆矩阵$A$有:
$PA=LU$
$n$阶方阵的置换矩阵$P$有$\binom{n}{1}=n!$个
对置换矩阵$P$,有$P^TP = I$
即$P^T = P^{-1}
## 转置矩阵Transpose Matrix
$(A^T)_{ij} = (A)_{ji}$
## 对称矩阵Symmetric Matrix
$A^T$ = $A$
对任意矩阵$R$有$R^TR$为对称矩阵:
$$
(R^TR)^T = (R)^T(R^T)^T = R^TR\\
\textrm{即}(R^TR)^T = R^TR
$$
## 向量空间Vector Space
所有向量空间都必须包含原点Origin
向量空间中任意向量的数乘、求和运算得到的向量也在该空间中。
即向量空间要满足加法封闭和数乘封闭。