mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 22:35:35 +08:00
82 lines
2.2 KiB
Markdown
82 lines
2.2 KiB
Markdown
# 3.4 – 保存和恢复模型
|
||
|
||
训练好了一个模型, 我们当然想要保存它, 留到下次要用的时候直接提取直接用, 这就是这节的内容啦. 我们用回归的神经网络举例实现保存提取.
|
||
|
||
## 保存
|
||
|
||
我们快速地建造数据, 搭建网络:
|
||
|
||
```py
|
||
torch.manual_seed(1) # reproducible
|
||
|
||
# 假数据
|
||
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
|
||
y = x.pow(2) 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
|
||
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
|
||
|
||
def save():
|
||
# 建网络
|
||
net1 = torch.nn.Sequential(
|
||
torch.nn.Linear(1, 10),
|
||
torch.nn.ReLU(),
|
||
torch.nn.Linear(10, 1)
|
||
)
|
||
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
|
||
loss_func = torch.nn.MSELoss()
|
||
|
||
# 训练
|
||
for t in range(100):
|
||
prediction = net1(x)
|
||
loss = loss_func(prediction, y)
|
||
optimizer.zero_grad()
|
||
loss.backward()
|
||
optimizer.step()
|
||
```
|
||
|
||
接下来我们有两种途径来保存
|
||
|
||
```py
|
||
torch.save(net1, \'net.pkl\') # 保存整个网络
|
||
torch.save(net1.state_dict(), \'net_params.pkl\') # 只保存网络中的参数 (速度快, 占内存少)
|
||
```
|
||
|
||
## 提取网络
|
||
|
||
这种方式将会提取整个神经网络, 网络大的时候可能会比较慢.
|
||
|
||
```py
|
||
def restore_net():
|
||
# restore entire net1 to net2
|
||
net2 = torch.load(\'net.pkl\')
|
||
prediction = net2(x)
|
||
```
|
||
|
||
## 只提取网络参数
|
||
|
||
这种方式将会提取所有的参数, 然后再放到你的新建网络中.
|
||
|
||
```py
|
||
def restore_params():
|
||
# 新建 net3
|
||
net3 = torch.nn.Sequential(
|
||
torch.nn.Linear(1, 10),
|
||
torch.nn.ReLU(),
|
||
torch.nn.Linear(10, 1)
|
||
)
|
||
|
||
# 将保存的参数复制到 net3
|
||
net3.load_state_dict(torch.load(\'net_params.pkl\'))
|
||
prediction = net3(x)
|
||
```
|
||
|
||
## 显示结果
|
||
|
||
调用上面建立的几个功能, 然后出图.
|
||
|
||

|
||
|
||
这样我们就能看出三个网络完全一模一样啦.
|
||
|
||
所以这也就是在我 [github 代码](https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/304_save_reload.py) 中的每一步的意义啦.
|
||
|
||
文章来源:[莫烦](https://morvanzhou.github.io/) |