mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 22:35:35 +08:00
145 lines
5.8 KiB
Markdown
145 lines
5.8 KiB
Markdown
# 4.2 – RNN 循环神经网络 (分类 Classification)
|
||
|
||
循环神经网络让神经网络有了记忆, 对于序列话的数据,循环神经网络能达到更好的效果. 如果你对循环神经网络还没有特别了解, 请观看几分钟的短动画, RNN 动画简介(如下) 和 LSTM(如下) 动画简介 能让你生动理解 RNN. 接着我们就一步一步做一个分析手写数字的 RNN 吧.
|
||
|
||
## RNN 简介
|
||
|
||
## LSTM 简介
|
||
|
||
## MNIST手写数据
|
||
|
||
```py
|
||
import torch
|
||
from torch import nn
|
||
from torch.autograd import Variable
|
||
import torchvision.datasets as dsets
|
||
import torchvision.transforms as transforms
|
||
import matplotlib.pyplot as plt
|
||
|
||
torch.manual_seed(1) # reproducible
|
||
|
||
# Hyper Parameters
|
||
EPOCH = 1 # 训练整批数据多少次, 为了节约时间, 我们只训练一次
|
||
BATCH_SIZE = 64
|
||
TIME_STEP = 28 # rnn 时间步数 / 图片高度
|
||
INPUT_SIZE = 28 # rnn 每步输入值 / 图片每行像素
|
||
LR = 0.01 # learning rate
|
||
DOWNLOAD_MNIST = True # 如果你已经下载好了mnist数据就写上 Fasle
|
||
|
||
# Mnist 手写数字
|
||
train_data = torchvision.datasets.MNIST(
|
||
root=\\'./mnist/\\', # 保存或者提取位置
|
||
train=True, # this is training data
|
||
transform=torchvision.transforms.ToTensor(), # 转换 PIL.Image or numpy.ndarray 成
|
||
# torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间
|
||
download=DOWNLOAD_MNIST, # 没下载就下载, 下载了就不用再下了
|
||
)
|
||
```
|
||
|
||

|
||
|
||
黑色的地方的值都是0, 白色的地方值大于0.
|
||
|
||
同样, 我们除了训练数据, 还给一些测试数据, 测试看看它有没有训练好.
|
||
|
||
```py
|
||
test_data = torchvision.datasets.MNIST(root=\\'./mnist/\\', train=False)
|
||
|
||
# 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)
|
||
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
|
||
|
||
# 为了节约时间, 我们测试时只测试前2000个
|
||
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)[:2000]/255\. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
|
||
test_y = test_data.test_labels[:2000]
|
||
```
|
||
|
||
#### RNN模型
|
||
|
||
和以前一样, 我们用一个 class 来建立 RNN 模型. 这个 RNN 整体流程是
|
||
|
||
1. (input0, state0) -> LSTM -> (output0, state1) ;
|
||
2. (input1, state1) -> LSTM -> (output1, state2) ;
|
||
3. …
|
||
4. (inputN, stateN)-> LSTM -> (outputN, stateN 1) ;
|
||
5. outputN -> Linear -> prediction . 通过LSTM分析每一时刻的值, 并且将这一时刻和前面时刻的理解合并在一起, 生成当前时刻对前面数据的理解或记忆. 传递这种理解给下一时刻分析.
|
||
|
||
```py
|
||
class RNN(nn.Module):
|
||
def __init__(self):
|
||
super(RNN, self).__init__()
|
||
|
||
self.rnn = nn.LSTM( # LSTM 效果要比 nn.RNN() 好多了
|
||
input_size=28, # 图片每行的数据像素点
|
||
hidden_size=64, # rnn hidden unit
|
||
num_layers=1, # 有几层 RNN layers
|
||
batch_first=True, # input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size)
|
||
)
|
||
|
||
self.out = nn.Linear(64, 10) # 输出层
|
||
|
||
def forward(self, x):
|
||
# x shape (batch, time_step, input_size)
|
||
# r_out shape (batch, time_step, output_size)
|
||
# h_n shape (n_layers, batch, hidden_size) LSTM 有两个 hidden states, h_n 是分线, h_c 是主线
|
||
# h_c shape (n_layers, batch, hidden_size)
|
||
r_out, (h_n, h_c) = self.rnn(x, None) # None 表示 hidden state 会用全0的 state
|
||
|
||
# 选取最后一个时间点的 r_out 输出
|
||
# 这里 r_out[:, -1, :] 的值也是 h_n 的值
|
||
out = self.out(r_out[:, -1, :])
|
||
return out
|
||
|
||
rnn = RNN()
|
||
print(rnn)
|
||
"""
|
||
RNN (
|
||
(rnn): LSTM(28, 64, batch_first=True)
|
||
(out): Linear (64 -> 10)
|
||
)
|
||
"""
|
||
```
|
||
|
||
#### 训练
|
||
|
||
我们将图片数据看成一个时间上的连续数据, 每一行的像素点都是这个时刻的输入, 读完整张图片就是从上而下的读完了每行的像素点. 然后我们就可以拿出 RNN 在最后一步的分析值判断图片是哪一类了. 下面的代码省略了计算 accuracy 的部分, 你可以在我的 github 中看到全部代码.
|
||
|
||
```py
|
||
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all parameters
|
||
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
|
||
|
||
# training and testing
|
||
for epoch in range(EPOCH):
|
||
for step, (x, y) in enumerate(train_loader): # gives batch data
|
||
b_x = Variable(x.view(-1, 28, 28)) # reshape x to (batch, time_step, input_size)
|
||
b_y = Variable(y) # batch y
|
||
|
||
output = rnn(b_x) # rnn output
|
||
loss = loss_func(output, b_y) # cross entropy loss
|
||
optimizer.zero_grad() # clear gradients for this training step
|
||
loss.backward() # backpropagation, compute gradients
|
||
optimizer.step() # apply gradients
|
||
"""
|
||
...
|
||
Epoch: 0 | train loss: 0.0945 | test accuracy: 0.94
|
||
Epoch: 0 | train loss: 0.0984 | test accuracy: 0.94
|
||
Epoch: 0 | train loss: 0.0332 | test accuracy: 0.95
|
||
Epoch: 0 | train loss: 0.1868 | test accuracy: 0.96
|
||
"""
|
||
```
|
||
|
||
最后我们再来取10个数据, 看看预测的值到底对不对:
|
||
|
||
```py
|
||
test_output = rnn(test_x[:10].view(-1, 28, 28))
|
||
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
|
||
print(pred_y, \\'prediction number\\')
|
||
print(test_y[:10], \\'real number\\')
|
||
"""
|
||
[7 2 1 0 4 1 4 9 5 9] prediction number
|
||
[7 2 1 0 4 1 4 9 5 9] real number
|
||
"""
|
||
```
|
||
|
||
所以这也就是在我 [github 代码](https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/402_RNN_classifier.py) 中的每一步的意义啦.
|
||
|
||
文章来源:[莫烦](https://morvanzhou.github.io/) |