mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 22:35:35 +08:00
165 lines
6.5 KiB
Markdown
165 lines
6.5 KiB
Markdown
# 4.5 – DQN 强化学习 (Reinforcement Learning)
|
||
|
||
Torch 是神经网络库, 那么也可以拿来做强化学习, 之前我用另一个强大神经网络库 Tensorflow来制作了这一个 从浅入深强化学习教程, 你同样也可以用 PyTorch 来实现, 这次我们就举 DQN 的例子, 我对比了我的 Tensorflow DQN 的代码, 发现 PyTorch 写的要简单很多. 如果对 DQN 或者强化学习还没有太多概念, 强烈推荐我的这个DQN动画短片(如下), 让你秒懂DQN. 还有强推这套花了我几个月来制作的[强化学习教程](https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/)!
|
||
|
||
<video class="wp-video-shortcode" id="video-135-1" width="760" height="427" preload="metadata" controls="controls"><source type="video/mp4" src="https://www.pytorchtutorial.com/wp-content/uploads/2017/08/cartpole-dqn.mp4?_=1">[https://www.pytorchtutorial.com/wp-content/uploads/2017/08/cartpole-dqn.mp4](https://www.pytorchtutorial.com/wp-content/uploads/2017/08/cartpole-dqn.mp4)</video>
|
||
|
||
## 模块导入和参数设置
|
||
|
||
这次除了 Torch 自家模块, 我们还要导入 Gym 环境库模块.
|
||
|
||
```py
|
||
import torch
|
||
import torch.nn as nn
|
||
from torch.autograd import Variable
|
||
import torch.nn.functional as F
|
||
import numpy as np
|
||
import gym
|
||
|
||
# 超参数
|
||
BATCH_SIZE = 32
|
||
LR = 0.01 # learning rate
|
||
EPSILON = 0.9 # 最优选择动作百分比
|
||
GAMMA = 0.9 # 奖励递减参数
|
||
TARGET_REPLACE_ITER = 100 # Q 现实网络的更新频率
|
||
MEMORY_CAPACITY = 2000 # 记忆库大小
|
||
env = gym.make(\'CartPole-v0\') # 立杆子游戏
|
||
env = env.unwrapped
|
||
N_ACTIONS = env.action_space.n # 杆子能做的动作
|
||
N_STATES = env.observation_space.shape[0] # 杆子能获取的环境信息数
|
||
```
|
||
|
||
## 神经网络
|
||
|
||
DQN 当中的神经网络模式, 我们将依据这个模式建立两个神经网络, 一个是现实网络 (Target Net), 一个是估计网络 (Eval Net).
|
||
|
||
```py
|
||
class Net(nn.Module):
|
||
def __init__(self, ):
|
||
super(Net, self).__init__()
|
||
self.fc1 = nn.Linear(N_STATES, 10)
|
||
self.fc1.weight.data.normal_(0, 0.1) # initialization
|
||
self.out = nn.Linear(10, N_ACTIONS)
|
||
self.out.weight.data.normal_(0, 0.1) # initialization
|
||
|
||
def forward(self, x):
|
||
x = self.fc1(x)
|
||
x = F.relu(x)
|
||
actions_value = self.out(x)
|
||
return actions_value
|
||
```
|
||
|
||
## DQN体系
|
||
|
||
简化的 DQN 体系是这样, 我们有两个 net, 有选动作机制, 有存经历机制, 有学习机制.
|
||
|
||
```py
|
||
class DQN(object):
|
||
def __init__(self):
|
||
# 建立 target net 和 eval net 还有 memory
|
||
|
||
def choose_action(self, x):
|
||
# 根据环境观测值选择动作的机制
|
||
return action
|
||
|
||
def store_transition(self, s, a, r, s_):
|
||
# 存储记忆
|
||
|
||
def learn(self):
|
||
# target 网络更新
|
||
# 学习记忆库中的记忆
|
||
```
|
||
|
||
接下来就是具体的啦, 在 DQN 中每个功能都是怎么做的.
|
||
|
||
```py
|
||
class DQN(object):
|
||
def __init__(self):
|
||
self.eval_net, self.target_net = Net(), Net()
|
||
|
||
self.learn_step_counter = 0 # 用于 target 更新计时
|
||
self.memory_counter = 0 # 记忆库记数
|
||
self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 2)) # 初始化记忆库
|
||
self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR) # torch 的优化器
|
||
self.loss_func = nn.MSELoss() # 误差公式
|
||
|
||
def choose_action(self, x):
|
||
x = Variable(torch.unsqueeze(torch.FloatTensor(x), 0))
|
||
# 这里只输入一个 sample
|
||
if np.random.uniform() < EPSILON: # 选最优动作
|
||
actions_value = self.eval_net.forward(x)
|
||
action = torch.max(actions_value, 1)[1].data.numpy()[0, 0] # return the argmax
|
||
else: # 选随机动作
|
||
action = np.random.randint(0, N_ACTIONS)
|
||
return action
|
||
|
||
def store_transition(self, s, a, r, s_):
|
||
transition = np.hstack((s, [a, r], s_))
|
||
# 如果记忆库满了, 就覆盖老数据
|
||
index = self.memory_counter % MEMORY_CAPACITY
|
||
self.memory[index, :] = transition
|
||
self.memory_counter = 1
|
||
|
||
def learn(self):
|
||
# target net 参数更新
|
||
if self.learn_step_counter % TARGET_REPLACE_ITER == 0:
|
||
self.target_net.load_state_dict(self.eval_net.state_dict())
|
||
self.learn_step_counter = 1
|
||
|
||
# 抽取记忆库中的批数据
|
||
sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)
|
||
b_memory = self.memory[sample_index, :]
|
||
b_s = Variable(torch.FloatTensor(b_memory[:, :N_STATES]))
|
||
b_a = Variable(torch.LongTensor(b_memory[:, N_STATES:N_STATES 1].astype(int)))
|
||
b_r = Variable(torch.FloatTensor(b_memory[:, N_STATES 1:N_STATES 2]))
|
||
b_s_ = Variable(torch.FloatTensor(b_memory[:, -N_STATES:]))
|
||
|
||
# 针对做过的动作b_a, 来选 q_eval 的值, (q_eval 原本有所有动作的值)
|
||
q_eval = self.eval_net(b_s).gather(1, b_a) # shape (batch, 1)
|
||
q_next = self.target_net(b_s_).detach() # q_next 不进行反向传递误差, 所以 detach
|
||
q_target = b_r GAMMA * q_next.max(1)[0] # shape (batch, 1)
|
||
loss = self.loss_func(q_eval, q_target)
|
||
|
||
# 计算, 更新 eval net
|
||
self.optimizer.zero_grad()
|
||
loss.backward()
|
||
self.optimizer.step()
|
||
```
|
||
|
||
## 训练
|
||
|
||
按照 Qlearning 的形式进行 off-policy 的更新. 我们进行回合制更行, 一个回合完了, 进入下一回合. 一直到他们将杆子立起来很久.
|
||
|
||
```py
|
||
dqn = DQN() # 定义 DQN 系统
|
||
|
||
for i_episode in range(400):
|
||
s = env.reset()
|
||
while True:
|
||
env.render() # 显示实验动画
|
||
a = dqn.choose_action(s)
|
||
|
||
# 选动作, 得到环境反馈
|
||
s_, r, done, info = env.step(a)
|
||
|
||
# 修改 reward, 使 DQN 快速学习
|
||
x, x_dot, theta, theta_dot = s_
|
||
r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8
|
||
r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
|
||
r = r1 r2
|
||
|
||
# 存记忆
|
||
dqn.store_transition(s, a, r, s_)
|
||
|
||
if dqn.memory_counter > MEMORY_CAPACITY:
|
||
dqn.learn() # 记忆库满了就进行学习
|
||
|
||
if done: # 如果回合结束, 进入下回合
|
||
break
|
||
|
||
s = s_
|
||
```
|
||
|
||
所以这也就是在我 [github 代码](https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/405_DQN_Reinforcement_learning.py) 中的每一步的意义啦.
|
||
|
||
文章来源:[莫烦](https://morvanzhou.github.io/) |