Files
ailearning/src/python/apriori.py
jiangzhonglian f69881fcc3 更新readme
2017-02-25 19:19:30 +08:00

207 lines
6.5 KiB
Python

#!/usr/bin/python
# coding: utf8
'''
Created on Mar 24, 2011
Ch 11 code
@author: Peter
'''
from numpy import *
def loadDataSet():
return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
def createC1(dataSet):
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return map(frozenset, C1) # use frozen set so we
# can use it as a key in a dict
def scanD(D, Ck, minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
# s.issubset(t) 测试是否 s 中的每一个元素都在 t 中
if can.issubset(tid):
if not ssCnt.has_key(can): ssCnt[can]=1
else: ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key]/numItems
if support >= minSupport:
retList.insert(0, key)
supportData[key] = support
return retList, supportData
def aprioriGen(Lk, k): #creates Ck
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
L1.sort(); L2.sort()
if L1==L2: #if first k-2 elements are equal
retList.append(Lk[i] | Lk[j]) #set union
return retList
def apriori(dataSet, minSupport = 0.5):
# 冻结每一行数据
C1 = createC1(dataSet)
D = map(set, dataSet)
# 计算支持support
L1, supportData = scanD(D, C1, minSupport)
print("outcome: ", supportData)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)#scan DB to get Lk
supportData.update(supK)
L.append(Lk)
k += 1
return L, supportData
def main():
# project_dir = os.path.dirname(os.path.dirname(os.getcwd()))
# 1.收集并准备数据
# dataMat, labelMat = loadDataSet("%s/resources/testSet.txt" % project_dir)
# 1. 加载数据
dataSet = loadDataSet()
print(dataSet)
# 调用 apriori 做购物篮分析
apriori(dataSet, minSupport = 0.7)
if __name__=="__main__":
main()
def generateRules(L, supportData, minConf=0.7): #supportData is a dict coming from scanD
bigRuleList = []
for i in range(1, len(L)):#only get the sets with two or more items
for freqSet in L[i]:
H1 = [frozenset([item]) for item in freqSet]
if (i > 1):
rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
else:
calcConf(freqSet, H1, supportData, bigRuleList, minConf)
return bigRuleList
def calcConf(freqSet, H, supportData, brl, minConf=0.7):
prunedH = [] #create new list to return
for conseq in H:
conf = supportData[freqSet]/supportData[freqSet-conseq] #calc confidence
if conf >= minConf:
print freqSet-conseq,'-->',conseq,'conf:',conf
brl.append((freqSet-conseq, conseq, conf))
prunedH.append(conseq)
return prunedH
def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):
m = len(H[0])
if (len(freqSet) > (m + 1)): #try further merging
Hmp1 = aprioriGen(H, m+1)#create Hm+1 new candidates
Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
if (len(Hmp1) > 1): #need at least two sets to merge
rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)
def pntRules(ruleList, itemMeaning):
for ruleTup in ruleList:
for item in ruleTup[0]:
print itemMeaning[item]
print " -------->"
for item in ruleTup[1]:
print itemMeaning[item]
print "confidence: %f" % ruleTup[2]
print #print a blank line
# from time import sleep
# from votesmart import votesmart
# votesmart.apikey = 'a7fa40adec6f4a77178799fae4441030'
# #votesmart.apikey = 'get your api key first'
# def getActionIds():
# actionIdList = []; billTitleList = []
# fr = open('recent20bills.txt')
# for line in fr.readlines():
# billNum = int(line.split('\t')[0])
# try:
# billDetail = votesmart.votes.getBill(billNum) #api call
# for action in billDetail.actions:
# if action.level == 'House' and \
# (action.stage == 'Passage' or action.stage == 'Amendment Vote'):
# actionId = int(action.actionId)
# print 'bill: %d has actionId: %d' % (billNum, actionId)
# actionIdList.append(actionId)
# billTitleList.append(line.strip().split('\t')[1])
# except:
# print "problem getting bill %d" % billNum
# sleep(1) #delay to be polite
# return actionIdList, billTitleList
#
# def getTransList(actionIdList, billTitleList): #this will return a list of lists containing ints
# itemMeaning = ['Republican', 'Democratic']#list of what each item stands for
# for billTitle in billTitleList:#fill up itemMeaning list
# itemMeaning.append('%s -- Nay' % billTitle)
# itemMeaning.append('%s -- Yea' % billTitle)
# transDict = {}#list of items in each transaction (politician)
# voteCount = 2
# for actionId in actionIdList:
# sleep(3)
# print 'getting votes for actionId: %d' % actionId
# try:
# voteList = votesmart.votes.getBillActionVotes(actionId)
# for vote in voteList:
# if not transDict.has_key(vote.candidateName):
# transDict[vote.candidateName] = []
# if vote.officeParties == 'Democratic':
# transDict[vote.candidateName].append(1)
# elif vote.officeParties == 'Republican':
# transDict[vote.candidateName].append(0)
# if vote.action == 'Nay':
# transDict[vote.candidateName].append(voteCount)
# elif vote.action == 'Yea':
# transDict[vote.candidateName].append(voteCount + 1)
# except:
# print "problem getting actionId: %d" % actionId
# voteCount += 2
# return transDict, itemMeaning