mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-13 15:26:28 +08:00
318 lines
13 KiB
Python
318 lines
13 KiB
Python
#!/usr/bin/python
|
||
# coding:utf8
|
||
|
||
'''
|
||
Created 2017-04-25
|
||
Random Forest Algorithm on Sonar Dataset
|
||
@author: Flying_sfeng/片刻
|
||
---
|
||
源代码网址:http://www.tuicool.com/articles/iiUfeim
|
||
Flying_sfeng博客地址:http://blog.csdn.net/flying_sfeng/article/details/64133822
|
||
在此表示感谢你的代码和注解, 我重新也完善了你的注解
|
||
'''
|
||
from random import seed, randrange, random
|
||
|
||
|
||
# 导入csv文件
|
||
def loadDataSet(filename):
|
||
dataset = []
|
||
with open(filename, 'r') as fr:
|
||
for line in fr.readlines():
|
||
if not line:
|
||
continue
|
||
lineArr = []
|
||
for featrue in line.split(','):
|
||
# strip()返回移除字符串头尾指定的字符生成的新字符串
|
||
str_f = featrue.strip()
|
||
if str_f.isdigit():
|
||
# 将数据集的第column列转换成float形式
|
||
lineArr.append(float(str_f))
|
||
else:
|
||
# 添加分类标签
|
||
lineArr.append(str_f)
|
||
dataset.append(lineArr)
|
||
return dataset
|
||
|
||
|
||
def cross_validation_split(dataset, n_folds):
|
||
"""cross_validation_split(将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的)
|
||
|
||
Args:
|
||
dataset 原始数据集
|
||
n_folds 数据集dataset分成n_flods份
|
||
Returns:
|
||
dataset_split list集合,存放的是:将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的
|
||
"""
|
||
dataset_split = list()
|
||
dataset_copy = list(dataset) #复制一份dataset,防止dataset的内容改变
|
||
fold_size = len(dataset) / n_folds
|
||
for i in range(n_folds):
|
||
fold = list() #每次循环fold清零,防止重复导入dataset_split
|
||
while len(fold) < fold_size: #这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
|
||
# 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
|
||
index = randrange(len(dataset_copy))
|
||
# 将对应索引index的内容从dataset_copy中导出,并将该内容从dataset_copy中删除。
|
||
# pop()函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
|
||
fold.append(dataset_copy.pop(index))
|
||
dataset_split.append(fold)
|
||
# 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证
|
||
return dataset_split
|
||
|
||
|
||
# Split a dataset based on an attribute and an attribute value #根据特征和特征值分割数据集
|
||
def test_split(index, value, dataset):
|
||
left, right = list(), list()
|
||
for row in dataset:
|
||
if row[index] < value:
|
||
left.append(row)
|
||
else:
|
||
right.append(row)
|
||
return left, right
|
||
|
||
|
||
# Calculate the Gini index for a split dataset
|
||
def gini_index(groups, class_values): #个人理解:计算代价,分类越准确,则gini越小
|
||
gini = 0.0
|
||
for class_value in class_values: #class_values =[0,1]
|
||
for group in groups: #groups=(left,right)
|
||
size = len(group)
|
||
if size == 0:
|
||
continue
|
||
proportion = [row[-1] for row in group].count(class_value) / float(size)
|
||
gini += (proportion * (1.0 - proportion)) #个人理解:计算代价,分类越准确,则gini越小
|
||
return gini
|
||
|
||
|
||
# 找出分割数据集的最优特征,得到最优的特征index,特征值row[index],以及分割完的数据groups(left,right)
|
||
def get_split(dataset, n_features):
|
||
class_values = list(set(row[-1] for row in dataset)) #class_values =[0,1]
|
||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||
features = list()
|
||
while len(features) < n_features:
|
||
index = randrange(len(dataset[0])-1) #往features添加n_features个特征(n_feature等于特征数的根号),特征索引从dataset中随机取
|
||
if index not in features:
|
||
features.append(index)
|
||
for index in features: #在n_features个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性
|
||
for row in dataset:
|
||
groups = test_split(index, row[index], dataset) #groups=(left,right);row[index]遍历每一行index索引下的特征值作为分类值value,找出最优的分类特征和特征值
|
||
gini = gini_index(groups, class_values)
|
||
if gini < b_score:
|
||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups #最后得到最优的分类特征b_index,分类特征值b_value,分类结果b_groups。b_value为分错的代价成本。
|
||
#print b_score
|
||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||
|
||
|
||
# Create a terminal node value #输出group中出现次数较多的标签
|
||
def to_terminal(group):
|
||
outcomes = [row[-1] for row in group] #max()函数中,当key参数不为空时,就以key的函数对象为判断的标准;
|
||
return max(set(outcomes), key=outcomes.count) # 输出group中出现次数较多的标签
|
||
|
||
|
||
# Create child splits for a node or make terminal #创建子分割器,递归分类,直到分类结束
|
||
def split(node, max_depth, min_size, n_features, depth): #max_depth = 10,min_size = 1,n_features = int(sqrt(len(dataset[0])-1))
|
||
left, right = node['groups']
|
||
del(node['groups'])
|
||
# check for a no split
|
||
if not left or not right:
|
||
node['left'] = node['right'] = to_terminal(left + right)
|
||
return
|
||
# check for max depth
|
||
if depth >= max_depth: #max_depth=10表示递归十次,若分类还未结束,则选取数据中分类标签较多的作为结果,使分类提前结束,防止过拟合
|
||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||
return
|
||
# process left child
|
||
if len(left) <= min_size:
|
||
node['left'] = to_terminal(left)
|
||
else:
|
||
node['left'] = get_split(left, n_features) #node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups},所以node是一个多层字典
|
||
split(node['left'], max_depth, min_size, n_features, depth+1) #递归,depth+1计算递归层数
|
||
# process right child
|
||
if len(right) <= min_size:
|
||
node['right'] = to_terminal(right)
|
||
else:
|
||
node['right'] = get_split(right, n_features)
|
||
split(node['right'], max_depth, min_size, n_features, depth+1)
|
||
|
||
|
||
# Build a decision tree
|
||
def build_tree(train, max_depth, min_size, n_features):
|
||
"""build_tree(创建一个决策树)
|
||
|
||
Args:
|
||
train 训练数据集
|
||
max_depth 决策树深度不能太深,不然容易导致过拟合
|
||
min_size 叶子节点的大小
|
||
n_features 选取的特征的个数
|
||
Returns:
|
||
root 返回决策树
|
||
"""
|
||
|
||
# 返回最有列和相关的信息
|
||
root = get_split(train, n_features)
|
||
|
||
# 对左右2变的数据 进行递归的调用,由于最优特征使用过,所以在后面进行使用的时候,就没有意义了
|
||
# 例如: 性别-男女,对男使用这一特征就没任何意义了
|
||
split(root, max_depth, min_size, n_features, 1)
|
||
return root
|
||
|
||
|
||
# Make a prediction with a decision tree
|
||
def predict(node, row): #预测模型分类结果
|
||
if row[node['index']] < node['value']:
|
||
if isinstance(node['left'], dict): #isinstance是Python中的一个内建函数。是用来判断一个对象是否是一个已知的类型。
|
||
return predict(node['left'], row)
|
||
else:
|
||
return node['left']
|
||
else:
|
||
if isinstance(node['right'], dict):
|
||
return predict(node['right'], row)
|
||
else:
|
||
return node['right']
|
||
|
||
|
||
# Make a prediction with a list of bagged trees
|
||
def bagging_predict(trees, row):
|
||
"""bagging_predict(bagging预测)
|
||
|
||
Args:
|
||
trees 决策树的集合
|
||
row 测试数据集的每一行数据
|
||
Returns:
|
||
返回随机森林中,决策树结果出现次数做大的
|
||
"""
|
||
|
||
# 使用多个决策树trees对测试集test的第row行进行预测,再使用简单投票法判断出该行所属分类
|
||
predictions = [predict(tree, row) for tree in trees]
|
||
return max(set(predictions), key=predictions.count)
|
||
|
||
|
||
# Create a random subsample from the dataset with replacement
|
||
def subsample(dataset, ratio): #创建数据集的随机子样本
|
||
"""random_forest(评估算法性能,返回模型得分)
|
||
|
||
Args:
|
||
dataset 训练数据集
|
||
ratio 训练数据集的样本比例
|
||
Returns:
|
||
sample 随机抽样的训练样本
|
||
"""
|
||
|
||
sample = list()
|
||
# 训练样本的按比例抽样。
|
||
# round() 方法返回浮点数x的四舍五入值。
|
||
n_sample = round(len(dataset) * ratio)
|
||
while len(sample) < n_sample:
|
||
# 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
|
||
index = randrange(len(dataset))
|
||
sample.append(dataset[index])
|
||
return sample
|
||
|
||
|
||
# Random Forest Algorithm
|
||
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
|
||
"""random_forest(评估算法性能,返回模型得分)
|
||
|
||
Args:
|
||
train 训练数据集
|
||
test 测试数据集
|
||
max_depth 决策树深度不能太深,不然容易导致过拟合
|
||
min_size 叶子节点的大小
|
||
sample_size 训练数据集的样本比例
|
||
n_trees 决策树的个数
|
||
n_features 选取的特征的个数
|
||
Returns:
|
||
predictions 每一行的预测结果,bagging 预测最后的分类结果
|
||
"""
|
||
|
||
trees = list()
|
||
# n_trees表示决策树的数量
|
||
for i in range(n_trees):
|
||
# 随机抽样的训练样本, 随机采样保证了每棵决策树训练集的差异性
|
||
sample = subsample(train, sample_size)
|
||
# 创建一个决策树
|
||
tree = build_tree(sample, max_depth, min_size, n_features)
|
||
trees.append(tree)
|
||
|
||
# 每一行的预测结果,bagging 预测最后的分类结果
|
||
predictions = [bagging_predict(trees, row) for row in test]
|
||
return predictions
|
||
|
||
|
||
# Calculate accuracy percentage
|
||
def accuracy_metric(actual, predicted): #导入实际值和预测值,计算精确度
|
||
correct = 0
|
||
for i in range(len(actual)):
|
||
if actual[i] == predicted[i]:
|
||
correct += 1
|
||
return correct / float(len(actual)) * 100.0
|
||
|
||
|
||
# 评估算法性能,返回模型得分
|
||
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
|
||
"""evaluate_algorithm(评估算法性能,返回模型得分)
|
||
|
||
Args:
|
||
dataset 原始数据集
|
||
algorithm 使用的算法
|
||
n_folds 树的个数
|
||
*args 其他的参数
|
||
Returns:
|
||
scores 模型得分
|
||
"""
|
||
|
||
# 将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的
|
||
folds = cross_validation_split(dataset, n_folds)
|
||
scores = list()
|
||
# 每次循环从folds从取出一个fold作为测试集,其余作为训练集,遍历整个folds,实现交叉验证
|
||
for fold in folds:
|
||
train_set = list(folds)
|
||
train_set.remove(fold)
|
||
# 将多个fold列表组合成一个train_set列表, 类似 union all
|
||
"""
|
||
In [20]: l1=[[1, 2, 'a'], [11, 22, 'b']]
|
||
In [21]: l2=[[3, 4, 'c'], [33, 44, 'd']]
|
||
In [22]: l=[]
|
||
In [23]: l.append(l1)
|
||
In [24]: l.append(l2)
|
||
In [25]: l
|
||
Out[25]: [[[1, 2, 'a'], [11, 22, 'b']], [[3, 4, 'c'], [33, 44, 'd']]]
|
||
In [26]: sum(l, [])
|
||
Out[26]: [[1, 2, 'a'], [11, 22, 'b'], [3, 4, 'c'], [33, 44, 'd']]
|
||
"""
|
||
train_set = sum(train_set, [])
|
||
test_set = list()
|
||
# fold表示从原始数据集dataset提取出来的测试集
|
||
for row in fold:
|
||
row_copy = list(row)
|
||
test_set.append(row_copy)
|
||
row_copy[-1] = None
|
||
predicted = algorithm(train_set, test_set, *args)
|
||
actual = [row[-1] for row in fold]
|
||
|
||
# 计算随机森林的预测结果的正确率
|
||
accuracy = accuracy_metric(actual, predicted)
|
||
scores.append(accuracy)
|
||
return scores
|
||
|
||
|
||
if __name__ == '__main__':
|
||
|
||
# 加载数据
|
||
dataset = loadDataSet('input/7.RandomForest/sonar-all-data.txt')
|
||
# print dataset
|
||
|
||
n_folds = 5 # 分成5份数据,进行交叉验证
|
||
max_depth = 20 # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
|
||
min_size = 1 # 决策树的叶子节点最少的元素数量
|
||
sample_size = 1.0 # 做决策树时候的样本的比例
|
||
# n_features = int(sqrt(len(dataset[0])-1))
|
||
n_features =15 # 调参(自己修改) #准确性与多样性之间的权衡
|
||
for n_trees in [1, 5, 10]: # 理论上树是越多越好
|
||
scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
|
||
# 每一次执行本文件时都能产生同一个随机数
|
||
seed(1)
|
||
print 'random=', random()
|
||
print 'Trees: %d' % n_trees
|
||
print 'Scores: %s' % scores
|
||
print 'Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores)))
|