Files
ailearning/src/python/7.RandomForest/randomForest.py
2017-04-27 21:10:30 +08:00

318 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/python
# coding:utf8
'''
Created 2017-04-25
Random Forest Algorithm on Sonar Dataset
@author: Flying_sfeng/片刻
---
源代码网址http://www.tuicool.com/articles/iiUfeim
Flying_sfeng博客地址http://blog.csdn.net/flying_sfeng/article/details/64133822
在此表示感谢你的代码和注解, 我重新也完善了你的注解
'''
from random import seed, randrange, random
# 导入csv文件
def loadDataSet(filename):
dataset = []
with open(filename, 'r') as fr:
for line in fr.readlines():
if not line:
continue
lineArr = []
for featrue in line.split(','):
# strip()返回移除字符串头尾指定的字符生成的新字符串
str_f = featrue.strip()
if str_f.isdigit():
# 将数据集的第column列转换成float形式
lineArr.append(float(str_f))
else:
# 添加分类标签
lineArr.append(str_f)
dataset.append(lineArr)
return dataset
def cross_validation_split(dataset, n_folds):
"""cross_validation_split(将数据集进行抽重抽样 n_folds 份数据可以重复重复抽取每一次list的元素是无重复的)
Args:
dataset 原始数据集
n_folds 数据集dataset分成n_flods份
Returns:
dataset_split list集合存放的是将数据集进行抽重抽样 n_folds 份数据可以重复重复抽取每一次list的元素是无重复的
"""
dataset_split = list()
dataset_copy = list(dataset) #复制一份dataset,防止dataset的内容改变
fold_size = len(dataset) / n_folds
for i in range(n_folds):
fold = list() #每次循环fold清零防止重复导入dataset_split
while len(fold) < fold_size: #这里不能用ifif只是在第一次判断时起作用while执行循环直到条件不成立
# 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
index = randrange(len(dataset_copy))
# 将对应索引index的内容从dataset_copy中导出并将该内容从dataset_copy中删除。
# pop()函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
# 由dataset分割出的n_folds个数据构成的列表为了用于交叉验证
return dataset_split
# Split a dataset based on an attribute and an attribute value #根据特征和特征值分割数据集
def test_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right
# Calculate the Gini index for a split dataset
def gini_index(groups, class_values): #个人理解计算代价分类越准确则gini越小
gini = 0.0
for class_value in class_values: #class_values =[0,1]
for group in groups: #groups=(left,right)
size = len(group)
if size == 0:
continue
proportion = [row[-1] for row in group].count(class_value) / float(size)
gini += (proportion * (1.0 - proportion)) #个人理解计算代价分类越准确则gini越小
return gini
# 找出分割数据集的最优特征得到最优的特征index特征值row[index]以及分割完的数据groupsleft,right
def get_split(dataset, n_features):
class_values = list(set(row[-1] for row in dataset)) #class_values =[0,1]
b_index, b_value, b_score, b_groups = 999, 999, 999, None
features = list()
while len(features) < n_features:
index = randrange(len(dataset[0])-1) #往features添加n_features个特征n_feature等于特征数的根号特征索引从dataset中随机取
if index not in features:
features.append(index)
for index in features: #在n_features个特征中选出最优的特征索引并没有遍历所有特征从而保证了每课决策树的差异性
for row in dataset:
groups = test_split(index, row[index], dataset) #groups=(left,right)row[index]遍历每一行index索引下的特征值作为分类值value找出最优的分类特征和特征值
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups #最后得到最优的分类特征b_index,分类特征值b_value,分类结果b_groups。b_value为分错的代价成本。
#print b_score
return {'index':b_index, 'value':b_value, 'groups':b_groups}
# Create a terminal node value #输出group中出现次数较多的标签
def to_terminal(group):
outcomes = [row[-1] for row in group] #max()函数中当key参数不为空时就以key的函数对象为判断的标准;
return max(set(outcomes), key=outcomes.count) # 输出group中出现次数较多的标签
# Create child splits for a node or make terminal #创建子分割器,递归分类,直到分类结束
def split(node, max_depth, min_size, n_features, depth): #max_depth = 10min_size = 1n_features = int(sqrt(len(dataset[0])-1))
left, right = node['groups']
del(node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth: #max_depth=10表示递归十次若分类还未结束则选取数据中分类标签较多的作为结果使分类提前结束防止过拟合
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left, n_features) #node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups}所以node是一个多层字典
split(node['left'], max_depth, min_size, n_features, depth+1) #递归depth+1计算递归层数
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right, n_features)
split(node['right'], max_depth, min_size, n_features, depth+1)
# Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
"""build_tree(创建一个决策树)
Args:
train 训练数据集
max_depth 决策树深度不能太深,不然容易导致过拟合
min_size 叶子节点的大小
n_features 选取的特征的个数
Returns:
root 返回决策树
"""
# 返回最有列和相关的信息
root = get_split(train, n_features)
# 对左右2变的数据 进行递归的调用,由于最优特征使用过,所以在后面进行使用的时候,就没有意义了
# 例如: 性别-男女,对男使用这一特征就没任何意义了
split(root, max_depth, min_size, n_features, 1)
return root
# Make a prediction with a decision tree
def predict(node, row): #预测模型分类结果
if row[node['index']] < node['value']:
if isinstance(node['left'], dict): #isinstance是Python中的一个内建函数。是用来判断一个对象是否是一个已知的类型。
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']
# Make a prediction with a list of bagged trees
def bagging_predict(trees, row):
"""bagging_predict(bagging预测)
Args:
trees 决策树的集合
row 测试数据集的每一行数据
Returns:
返回随机森林中,决策树结果出现次数做大的
"""
# 使用多个决策树trees对测试集test的第row行进行预测再使用简单投票法判断出该行所属分类
predictions = [predict(tree, row) for tree in trees]
return max(set(predictions), key=predictions.count)
# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio): #创建数据集的随机子样本
"""random_forest(评估算法性能,返回模型得分)
Args:
dataset 训练数据集
ratio 训练数据集的样本比例
Returns:
sample 随机抽样的训练样本
"""
sample = list()
# 训练样本的按比例抽样。
# round() 方法返回浮点数x的四舍五入值。
n_sample = round(len(dataset) * ratio)
while len(sample) < n_sample:
# 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
index = randrange(len(dataset))
sample.append(dataset[index])
return sample
# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
"""random_forest(评估算法性能,返回模型得分)
Args:
train 训练数据集
test 测试数据集
max_depth 决策树深度不能太深,不然容易导致过拟合
min_size 叶子节点的大小
sample_size 训练数据集的样本比例
n_trees 决策树的个数
n_features 选取的特征的个数
Returns:
predictions 每一行的预测结果bagging 预测最后的分类结果
"""
trees = list()
# n_trees表示决策树的数量
for i in range(n_trees):
# 随机抽样的训练样本, 随机采样保证了每棵决策树训练集的差异性
sample = subsample(train, sample_size)
# 创建一个决策树
tree = build_tree(sample, max_depth, min_size, n_features)
trees.append(tree)
# 每一行的预测结果bagging 预测最后的分类结果
predictions = [bagging_predict(trees, row) for row in test]
return predictions
# Calculate accuracy percentage
def accuracy_metric(actual, predicted): #导入实际值和预测值,计算精确度
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0
# 评估算法性能,返回模型得分
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
"""evaluate_algorithm(评估算法性能,返回模型得分)
Args:
dataset 原始数据集
algorithm 使用的算法
n_folds 树的个数
*args 其他的参数
Returns:
scores 模型得分
"""
# 将数据集进行抽重抽样 n_folds 份数据可以重复重复抽取每一次list的元素是无重复的
folds = cross_validation_split(dataset, n_folds)
scores = list()
# 每次循环从folds从取出一个fold作为测试集其余作为训练集遍历整个folds实现交叉验证
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
# 将多个fold列表组合成一个train_set列表, 类似 union all
"""
In [20]: l1=[[1, 2, 'a'], [11, 22, 'b']]
In [21]: l2=[[3, 4, 'c'], [33, 44, 'd']]
In [22]: l=[]
In [23]: l.append(l1)
In [24]: l.append(l2)
In [25]: l
Out[25]: [[[1, 2, 'a'], [11, 22, 'b']], [[3, 4, 'c'], [33, 44, 'd']]]
In [26]: sum(l, [])
Out[26]: [[1, 2, 'a'], [11, 22, 'b'], [3, 4, 'c'], [33, 44, 'd']]
"""
train_set = sum(train_set, [])
test_set = list()
# fold表示从原始数据集dataset提取出来的测试集
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
# 计算随机森林的预测结果的正确率
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
if __name__ == '__main__':
# 加载数据
dataset = loadDataSet('input/7.RandomForest/sonar-all-data.txt')
# print dataset
n_folds = 5 # 分成5份数据进行交叉验证
max_depth = 20 # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
min_size = 1 # 决策树的叶子节点最少的元素数量
sample_size = 1.0 # 做决策树时候的样本的比例
# n_features = int(sqrt(len(dataset[0])-1))
n_features =15 # 调参(自己修改) #准确性与多样性之间的权衡
for n_trees in [1, 5, 10]: # 理论上树是越多越好
scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
# 每一次执行本文件时都能产生同一个随机数
seed(1)
print 'random=', random()
print 'Trees: %d' % n_trees
print 'Scores: %s' % scores
print 'Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores)))